| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > comm0 | GIF version | ||
| Description: Commutation with 0. Kalmbach 83 p. 20. (Contributed by NM, 27-Aug-1997.) |
| Ref | Expression |
|---|---|
| comm0 | a C 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 | . . . . 5 (0 ∪ a) = (a ∪ 0) | |
| 2 | or0 102 | . . . . 5 (a ∪ 0) = a | |
| 3 | 1, 2 | ax-r2 36 | . . . 4 (0 ∪ a) = a |
| 4 | 3 | ax-r1 35 | . . 3 a = (0 ∪ a) |
| 5 | an0 108 | . . . . 5 (a ∩ 0) = 0 | |
| 6 | df-f 42 | . . . . . . . 8 0 = 1⊥ | |
| 7 | 6 | con2 67 | . . . . . . 7 0⊥ = 1 |
| 8 | 7 | lan 77 | . . . . . 6 (a ∩ 0⊥ ) = (a ∩ 1) |
| 9 | an1 106 | . . . . . 6 (a ∩ 1) = a | |
| 10 | 8, 9 | ax-r2 36 | . . . . 5 (a ∩ 0⊥ ) = a |
| 11 | 5, 10 | 2or 72 | . . . 4 ((a ∩ 0) ∪ (a ∩ 0⊥ )) = (0 ∪ a) |
| 12 | 11 | ax-r1 35 | . . 3 (0 ∪ a) = ((a ∩ 0) ∪ (a ∩ 0⊥ )) |
| 13 | 4, 12 | ax-r2 36 | . 2 a = ((a ∩ 0) ∪ (a ∩ 0⊥ )) |
| 14 | 13 | df-c1 132 | 1 a C 0 |
| Colors of variables: term |
| Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 0wf 9 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-c1 132 |
| This theorem is referenced by: wcom0 407 |
| Copyright terms: Public domain | W3C validator |