Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > an1 | GIF version |
Description: Conjunction with 1. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
an1 | (a ∩ 1) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-a 40 | . 2 (a ∩ 1) = (a⊥ ∪ 1⊥ )⊥ | |
2 | df-f 42 | . . . . . 6 0 = 1⊥ | |
3 | 2 | ax-r1 35 | . . . . 5 1⊥ = 0 |
4 | 3 | lor 70 | . . . 4 (a⊥ ∪ 1⊥ ) = (a⊥ ∪ 0) |
5 | or0 102 | . . . 4 (a⊥ ∪ 0) = a⊥ | |
6 | 4, 5 | ax-r2 36 | . . 3 (a⊥ ∪ 1⊥ ) = a⊥ |
7 | 6 | con2 67 | . 2 (a⊥ ∪ 1⊥ )⊥ = a |
8 | 1, 7 | ax-r2 36 | 1 (a ∩ 1) = a |
Copyright terms: Public domain | W3C validator |