Proof of Theorem dp15lemc
Step | Hyp | Ref
| Expression |
1 | | dp15lema.1 |
. . 3
d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) |
2 | | dp15lema.2 |
. . 3
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
3 | | dp15lema.3 |
. . 3
e = (b0 ∩ (a0 ∪ p0)) |
4 | 1, 2, 3 | dp15lemb 1155 |
. 2
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
5 | 3 | ror 71 |
. . 3
(e ∪ b1) = ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
6 | 5 | lan 77 |
. 2
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
7 | 1 | lor 70 |
. . . 4
(a0 ∪ d) = (a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
8 | 3 | ror 71 |
. . . 4
(e ∪ b2) = ((b0 ∩ (a0 ∪ p0)) ∪ b2) |
9 | 7, 8 | 2an 79 |
. . 3
((a0 ∪ d) ∩ (e
∪ b2)) = ((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) |
10 | 1 | lor 70 |
. . . 4
(a1 ∪ d) = (a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
11 | 10 | ran 78 |
. . 3
((a1 ∪ d) ∩ (b1 ∪ b2)) = ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) |
12 | 9, 11 | 2or 72 |
. 2
(((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) = (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |
13 | 4, 6, 12 | le3tr2 141 |
1
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |