Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp23 | GIF version |
Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305 (1982). (2)=>(3). (Contributed by NM, 4-Apr-2012.) |
Ref | Expression |
---|---|
dp23.1 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp23.2 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
dp23.3 | c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
dp23.4 | p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
Ref | Expression |
---|---|
dp23 | p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp23.1 | . . 3 c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) | |
2 | dp23.2 | . . 3 c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) | |
3 | dp23.3 | . . 3 c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) | |
4 | dp23.4 | . . 3 p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) | |
5 | 1, 2, 3, 4 | dp32 1196 | . 2 p ≤ ((a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
6 | lea 160 | . . 3 (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ≤ a0 | |
7 | 6 | leror 152 | . 2 ((a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
8 | 5, 7 | letr 137 | 1 p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 ax-arg 1153 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |