Proof of Theorem dp32
Step | Hyp | Ref
| Expression |
1 | | dp32.1 |
. . . 4
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
2 | | dp32.2 |
. . . 4
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
3 | | dp32.3 |
. . . 4
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
4 | | dp32.4 |
. . . 4
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
5 | 1, 2, 3, 4 | dp53 1170 |
. . 3
p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
6 | | ancom 74 |
. . . . 5
((a1 ∪ a2) ∩ (b1 ∪ b2)) = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
7 | 1, 6 | tr 62 |
. . . 4
c0 = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
8 | | ancom 74 |
. . . . 5
((a0 ∪ a2) ∩ (b0 ∪ b2)) = ((b0 ∪ b2) ∩ (a0 ∪ a2)) |
9 | 2, 8 | tr 62 |
. . . 4
c1 = ((b0 ∪ b2) ∩ (a0 ∪ a2)) |
10 | | ancom 74 |
. . . . 5
((a0 ∪ a1) ∩ (b0 ∪ b1)) = ((b0 ∪ b1) ∩ (a0 ∪ a1)) |
11 | 3, 10 | tr 62 |
. . . 4
c2 = ((b0 ∪ b1) ∩ (a0 ∪ a1)) |
12 | | orcom 73 |
. . . . . . 7
(a0 ∪ b0) = (b0 ∪ a0) |
13 | | orcom 73 |
. . . . . . 7
(a1 ∪ b1) = (b1 ∪ a1) |
14 | 12, 13 | 2an 79 |
. . . . . 6
((a0 ∪ b0) ∩ (a1 ∪ b1)) = ((b0 ∪ a0) ∩ (b1 ∪ a1)) |
15 | | orcom 73 |
. . . . . 6
(a2 ∪ b2) = (b2 ∪ a2) |
16 | 14, 15 | 2an 79 |
. . . . 5
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = (((b0 ∪ a0) ∩ (b1 ∪ a1)) ∩ (b2 ∪ a2)) |
17 | 4, 16 | tr 62 |
. . . 4
p = (((b0 ∪ a0) ∩ (b1 ∪ a1)) ∩ (b2 ∪ a2)) |
18 | 7, 9, 11, 17 | dp53 1170 |
. . 3
p ≤ (b0 ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1))))) |
19 | 5, 18 | ler2an 173 |
. 2
p ≤ ((a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ∩ (b0 ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
20 | | leao1 162 |
. . . 4
(a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
21 | 20 | mldual2i 1127 |
. . 3
((a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ∩ (b0 ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))))) = (((a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ∩ b0) ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1))))) |
22 | | ancom 74 |
. . . . 5
((a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ∩ b0) = (b0 ∩ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
23 | | mldual 1124 |
. . . . 5
(b0 ∩ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) = ((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
24 | | leao2 163 |
. . . . . . . . . . 11
(b0 ∩ a0) ≤ (a0 ∪ a1) |
25 | | leao1 162 |
. . . . . . . . . . 11
(b0 ∩ a0) ≤ (b0 ∪ b1) |
26 | 24, 25 | ler2an 173 |
. . . . . . . . . 10
(b0 ∩ a0) ≤ ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
27 | 3 | cm 61 |
. . . . . . . . . 10
((a0 ∪ a1) ∩ (b0 ∪ b1)) = c2 |
28 | 26, 27 | lbtr 139 |
. . . . . . . . 9
(b0 ∩ a0) ≤ c2 |
29 | | leao2 163 |
. . . . . . . . . . . 12
(b0 ∩ a0) ≤ (a0 ∪ a2) |
30 | | leao1 162 |
. . . . . . . . . . . 12
(b0 ∩ a0) ≤ (b0 ∪ b2) |
31 | 29, 30 | ler2an 173 |
. . . . . . . . . . 11
(b0 ∩ a0) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
32 | 2 | cm 61 |
. . . . . . . . . . 11
((a0 ∪ a2) ∩ (b0 ∪ b2)) = c1 |
33 | 31, 32 | lbtr 139 |
. . . . . . . . . 10
(b0 ∩ a0) ≤ c1 |
34 | 33 | lerr 150 |
. . . . . . . . 9
(b0 ∩ a0) ≤ (c0 ∪ c1) |
35 | 28, 34 | ler2an 173 |
. . . . . . . 8
(b0 ∩ a0) ≤ (c2 ∩ (c0 ∪ c1)) |
36 | 35 | lerr 150 |
. . . . . . 7
(b0 ∩ a0) ≤ (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
37 | 36 | ml2i 1125 |
. . . . . 6
((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) = (((b0 ∩ a0) ∪ b0) ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
38 | | lea 160 |
. . . . . . . 8
(b0 ∩ a0) ≤ b0 |
39 | 38 | df-le2 131 |
. . . . . . 7
((b0 ∩ a0) ∪ b0) = b0 |
40 | 39 | ran 78 |
. . . . . 6
(((b0 ∩ a0) ∪ b0) ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
41 | 37, 40 | tr 62 |
. . . . 5
((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
42 | 22, 23, 41 | 3tr 65 |
. . . 4
((a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ∩ b0) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
43 | 42 | ror 71 |
. . 3
(((a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ∩ b0) ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1))))) = ((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1))))) |
44 | | orcom 73 |
. . 3
((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1))))) = ((a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
45 | 21, 43, 44 | 3tr 65 |
. 2
((a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ∩ (b0 ∪ (a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))))) = ((a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
46 | 19, 45 | lbtr 139 |
1
p ≤ ((a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |