QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  dp35lema GIF version

Theorem dp35lema 1178
Description: Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM, 12-Apr-2012.)
Hypotheses
Ref Expression
dp35lem.1 c0 = ((a1a2) ∩ (b1b2))
dp35lem.2 c1 = ((a0a2) ∩ (b0b2))
dp35lem.3 c2 = ((a0a1) ∩ (b0b1))
dp35lem.4 p0 = ((a1b1) ∩ (a2b2))
dp35lem.5 p = (((a0b0) ∩ (a1b1)) ∩ (a2b2))
Assertion
Ref Expression
dp35lema (b1 ∪ (b0 ∩ (a0p0))) ≤ (b1 ∪ ((a0a1) ∩ (c0c1)))

Proof of Theorem dp35lema
StepHypRef Expression
1 leo 158 . 2 b1 ≤ (b1 ∪ ((a0a1) ∩ (c0c1)))
2 dp35lem.1 . . . 4 c0 = ((a1a2) ∩ (b1b2))
3 dp35lem.2 . . . 4 c1 = ((a0a2) ∩ (b0b2))
4 dp35lem.3 . . . 4 c2 = ((a0a1) ∩ (b0b1))
5 dp35lem.4 . . . 4 p0 = ((a1b1) ∩ (a2b2))
6 dp35lem.5 . . . 4 p = (((a0b0) ∩ (a1b1)) ∩ (a2b2))
72, 3, 4, 5, 6dp35lembb 1177 . . 3 (b0 ∩ (a0p0)) ≤ (b0 ∩ (b1 ∪ ((a0a1) ∩ (c0c1))))
8 lear 161 . . 3 (b0 ∩ (b1 ∪ ((a0a1) ∩ (c0c1)))) ≤ (b1 ∪ ((a0a1) ∩ (c0c1)))
97, 8letr 137 . 2 (b0 ∩ (a0p0)) ≤ (b1 ∪ ((a0a1) ∩ (c0c1)))
101, 9lel2or 170 1 (b1 ∪ (b0 ∩ (a0p0))) ≤ (b1 ∪ ((a0a1) ∩ (c0c1)))
Colors of variables: term
Syntax hints:   = wb 1  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1122  ax-arg 1153
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  dp35lem0  1179
  Copyright terms: Public domain W3C validator