Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp35lema | GIF version |
Description: Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM, 12-Apr-2012.) |
Ref | Expression |
---|---|
dp35lem.1 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp35lem.2 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
dp35lem.3 | c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
dp35lem.4 | p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
dp35lem.5 | p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
Ref | Expression |
---|---|
dp35lema | (b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . 2 b1 ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) | |
2 | dp35lem.1 | . . . 4 c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) | |
3 | dp35lem.2 | . . . 4 c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) | |
4 | dp35lem.3 | . . . 4 c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) | |
5 | dp35lem.4 | . . . 4 p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) | |
6 | dp35lem.5 | . . . 4 p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) | |
7 | 2, 3, 4, 5, 6 | dp35lembb 1177 | . . 3 (b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
8 | lear 161 | . . 3 (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) | |
9 | 7, 8 | letr 137 | . 2 (b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
10 | 1, 9 | lel2or 170 | 1 (b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 ax-arg 1153 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: dp35lem0 1179 |
Copyright terms: Public domain | W3C validator |