Proof of Theorem dp35lem0
| Step | Hyp | Ref
| Expression |
| 1 | | orcom 73 |
. . . . . 6
((b0 ∩ (a0 ∪ p0)) ∪ b1) = (b1 ∪ (b0 ∩ (a0 ∪ p0))) |
| 2 | | leid 148 |
. . . . . 6
(b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ (b0 ∩ (a0 ∪ p0))) |
| 3 | 1, 2 | bltr 138 |
. . . . 5
((b0 ∩ (a0 ∪ p0)) ∪ b1) ≤ (b1 ∪ (b0 ∩ (a0 ∪ p0))) |
| 4 | | dp35lem.1 |
. . . . . 6
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
| 5 | | dp35lem.2 |
. . . . . 6
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
| 6 | | dp35lem.3 |
. . . . . 6
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
| 7 | | dp35lem.4 |
. . . . . 6
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
| 8 | | dp35lem.5 |
. . . . . 6
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
| 9 | 4, 5, 6, 7, 8 | dp35lema 1178 |
. . . . 5
(b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
| 10 | 3, 9 | letr 137 |
. . . 4
((b0 ∩ (a0 ∪ p0)) ∪ b1) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
| 11 | 10 | lelan 167 |
. . 3
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((a0 ∪ a1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
| 12 | | id 59 |
. . . . 5
((a0 ∪ a1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = ((a0 ∪ a1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
| 13 | | lea 160 |
. . . . . 6
((a0 ∪ a1) ∩ (c0 ∪ c1)) ≤ (a0 ∪ a1) |
| 14 | 13 | mldual2i 1127 |
. . . . 5
((a0 ∪ a1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (((a0 ∪ a1) ∩ b1) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
| 15 | 12, 14 | tr 62 |
. . . 4
((a0 ∪ a1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (((a0 ∪ a1) ∩ b1) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
| 16 | | ancom 74 |
. . . . 5
((a0 ∪ a1) ∩ b1) = (b1 ∩ (a0 ∪ a1)) |
| 17 | 16 | ror 71 |
. . . 4
(((a0 ∪ a1) ∩ b1) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) = ((b1 ∩ (a0 ∪ a1)) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
| 18 | 15, 17 | tr 62 |
. . 3
((a0 ∪ a1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = ((b1 ∩ (a0 ∪ a1)) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
| 19 | 11, 18 | lbtr 139 |
. 2
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((b1 ∩ (a0 ∪ a1)) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
| 20 | | lear 161 |
. . . 4
((a0 ∪ a1) ∩ (c0 ∪ c1)) ≤ (c0 ∪ c1) |
| 21 | 20 | lelor 166 |
. . 3
((b1 ∩ (a0 ∪ a1)) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ≤ ((b1 ∩ (a0 ∪ a1)) ∪ (c0 ∪ c1)) |
| 22 | | orcom 73 |
. . 3
((b1 ∩ (a0 ∪ a1)) ∪ (c0 ∪ c1)) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
| 23 | 21, 22 | lbtr 139 |
. 2
((b1 ∩ (a0 ∪ a1)) ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
| 24 | 19, 23 | letr 137 |
1
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |