Proof of Theorem dp41lemj
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . . 8
(a2 ∪ b2) = (b2 ∪ a2) |
2 | 1 | lan 77 |
. . . . . . 7
(a0 ∩ (a2 ∪ b2)) = (a0 ∩ (b2 ∪ a2)) |
3 | 2 | lor 70 |
. . . . . 6
(a2 ∪ (a0 ∩ (a2 ∪ b2))) = (a2 ∪ (a0 ∩ (b2 ∪ a2))) |
4 | | ml3 1130 |
. . . . . 6
(a2 ∪ (a0 ∩ (b2 ∪ a2))) = (a2 ∪ (b2 ∩ (a0 ∪ a2))) |
5 | 3, 4 | tr 62 |
. . . . 5
(a2 ∪ (a0 ∩ (a2 ∪ b2))) = (a2 ∪ (b2 ∩ (a0 ∪ a2))) |
6 | 5 | lor 70 |
. . . 4
(a1 ∪ (a2 ∪ (a0 ∩ (a2 ∪ b2)))) = (a1 ∪ (a2 ∪ (b2 ∩ (a0 ∪ a2)))) |
7 | | orass 75 |
. . . 4
((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2))) = (a1 ∪ (a2 ∪ (a0 ∩ (a2 ∪ b2)))) |
8 | | orass 75 |
. . . 4
((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2))) = (a1 ∪ (a2 ∪ (b2 ∩ (a0 ∪ a2)))) |
9 | 6, 7, 8 | 3tr1 63 |
. . 3
((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2))) = ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2))) |
10 | 9 | lan 77 |
. 2
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) = ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) |
11 | | ml3 1130 |
. . . . 5
(b2 ∪ (b1 ∩ (a2 ∪ b2))) = (b2 ∪ (a2 ∩ (b1 ∪ b2))) |
12 | 11 | lor 70 |
. . . 4
(b0 ∪ (b2 ∪ (b1 ∩ (a2 ∪ b2)))) = (b0 ∪ (b2 ∪ (a2 ∩ (b1 ∪ b2)))) |
13 | | orass 75 |
. . . 4
((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))) = (b0 ∪ (b2 ∪ (b1 ∩ (a2 ∪ b2)))) |
14 | | orass 75 |
. . . 4
((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))) = (b0 ∪ (b2 ∪ (a2 ∩ (b1 ∪ b2)))) |
15 | 12, 13, 14 | 3tr1 63 |
. . 3
((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))) = ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))) |
16 | 15 | lan 77 |
. 2
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2)))) = ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2)))) |
17 | 10, 16 | 2or 72 |
1
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) |