Proof of Theorem dp41lemk
Step | Hyp | Ref
| Expression |
1 | | leao3 164 |
. . . 4
(b2 ∩ (a0 ∪ a2)) ≤ (b1 ∪ b2) |
2 | 1 | mldual2i 1127 |
. . 3
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b2 ∩ (a0 ∪ a2))) |
3 | | dp41lem.1 |
. . . . . 6
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
4 | | ancom 74 |
. . . . . 6
((a1 ∪ a2) ∩ (b1 ∪ b2)) = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
5 | 3, 4 | tr 62 |
. . . . 5
c0 = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
6 | 5 | ror 71 |
. . . 4
(c0 ∪ (b2 ∩ (a0 ∪ a2))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b2 ∩ (a0 ∪ a2))) |
7 | 6 | cm 61 |
. . 3
(((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b2 ∩ (a0 ∪ a2))) = (c0 ∪ (b2 ∩ (a0 ∪ a2))) |
8 | 2, 7 | tr 62 |
. 2
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) = (c0 ∪ (b2 ∩ (a0 ∪ a2))) |
9 | | leao3 164 |
. . . 4
(a2 ∩ (b1 ∪ b2)) ≤ (a0 ∪ a2) |
10 | 9 | mldual2i 1127 |
. . 3
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2)))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a2 ∩ (b1 ∪ b2))) |
11 | | dp41lem.2 |
. . . . 5
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
12 | 11 | ror 71 |
. . . 4
(c1 ∪ (a2 ∩ (b1 ∪ b2))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a2 ∩ (b1 ∪ b2))) |
13 | 12 | cm 61 |
. . 3
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a2 ∩ (b1 ∪ b2))) = (c1 ∪ (a2 ∩ (b1 ∪ b2))) |
14 | 10, 13 | tr 62 |
. 2
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2)))) = (c1 ∪ (a2 ∩ (b1 ∪ b2))) |
15 | 8, 14 | 2or 72 |
1
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) = ((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) |