Proof of Theorem dp41lemm
Step | Hyp | Ref
| Expression |
1 | | dp41lem.1 |
. . . . . . . 8
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
2 | | dp41lem.2 |
. . . . . . . 8
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
3 | | dp41lem.3 |
. . . . . . . 8
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
4 | | dp41lem.4 |
. . . . . . . 8
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
5 | | dp41lem.5 |
. . . . . . . 8
p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
6 | | dp41lem.6 |
. . . . . . . 8
p2 ≤ (a2 ∪ b2) |
7 | 1, 2, 3, 4, 5, 6 | dp41lemb 1183 |
. . . . . . 7
c2 = ((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) |
8 | 1, 2, 3, 4, 5, 6 | dp41lemc 1185 |
. . . . . . 7
((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
9 | 7, 8 | bltr 138 |
. . . . . 6
c2 ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
10 | 1, 2, 3, 4, 5, 6 | dp41lemd 1186 |
. . . . . 6
(c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
11 | 9, 10 | lbtr 139 |
. . . . 5
c2 ≤ (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
12 | 1, 2, 3, 4, 5, 6 | dp41leme 1187 |
. . . . 5
(c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
13 | 11, 12 | letr 137 |
. . . 4
c2 ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
14 | 1, 2, 3, 4, 5, 6 | dp41lemf 1188 |
. . . . 5
((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) |
15 | 1, 2, 3, 4, 5, 6 | dp41lemg 1189 |
. . . . 5
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |
16 | 14, 15 | tr 62 |
. . . 4
((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |
17 | 13, 16 | lbtr 139 |
. . 3
c2 ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |
18 | 1, 2, 3, 4, 5, 6 | dp41lemh 1190 |
. . 3
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) |
19 | 17, 18 | letr 137 |
. 2
c2 ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) |
20 | 1, 2, 3, 4, 5, 6 | dp41lemj 1191 |
. . 3
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) |
21 | 1, 2, 3, 4, 5, 6 | dp41lemk 1192 |
. . 3
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) = ((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) |
22 | 1, 2, 3, 4, 5, 6 | dp41leml 1193 |
. . 3
((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) = (c0 ∪ c1) |
23 | 20, 21, 22 | 3tr 65 |
. 2
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) = (c0 ∪ c1) |
24 | 19, 23 | lbtr 139 |
1
c2 ≤ (c0 ∪ c1) |