Proof of Theorem dp41lemh
| Step | Hyp | Ref
| Expression |
| 1 | | lea 160 |
. . . . 5
(a0 ∩ (a1 ∪ b1)) ≤ a0 |
| 2 | | leo 158 |
. . . . . . 7
a0 ≤ (a0 ∪ b0) |
| 3 | 2 | leran 153 |
. . . . . 6
(a0 ∩ (a1 ∪ b1)) ≤ ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
| 4 | | dp41lem.5 |
. . . . . . . 8
p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
| 5 | 4 | cm 61 |
. . . . . . 7
((a0 ∪ b0) ∩ (a1 ∪ b1)) = p2 |
| 6 | | dp41lem.6 |
. . . . . . 7
p2 ≤ (a2 ∪ b2) |
| 7 | 5, 6 | bltr 138 |
. . . . . 6
((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ (a2 ∪ b2) |
| 8 | 3, 7 | letr 137 |
. . . . 5
(a0 ∩ (a1 ∪ b1)) ≤ (a2 ∪ b2) |
| 9 | 1, 8 | ler2an 173 |
. . . 4
(a0 ∩ (a1 ∪ b1)) ≤ (a0 ∩ (a2 ∪ b2)) |
| 10 | 9 | lelor 166 |
. . 3
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2))) |
| 11 | 10 | lelan 167 |
. 2
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ≤ ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) |
| 12 | | lea 160 |
. . . . 5
(b1 ∩ (a0 ∪ b0)) ≤ b1 |
| 13 | | lear 161 |
. . . . . . 7
(b1 ∩ (a0 ∪ b0)) ≤ (a0 ∪ b0) |
| 14 | | leao3 164 |
. . . . . . 7
(b1 ∩ (a0 ∪ b0)) ≤ (a1 ∪ b1) |
| 15 | 13, 14 | ler2an 173 |
. . . . . 6
(b1 ∩ (a0 ∪ b0)) ≤ ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
| 16 | 15, 7 | letr 137 |
. . . . 5
(b1 ∩ (a0 ∪ b0)) ≤ (a2 ∪ b2) |
| 17 | 12, 16 | ler2an 173 |
. . . 4
(b1 ∩ (a0 ∪ b0)) ≤ (b1 ∩ (a2 ∪ b2)) |
| 18 | 17 | lelor 166 |
. . 3
((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))) ≤ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))) |
| 19 | 18 | lelan 167 |
. 2
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0)))) ≤ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2)))) |
| 20 | 11, 19 | le2or 168 |
1
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) |