Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp53lemg | GIF version |
Description: Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM, 2-Apr-2012.) |
Ref | Expression |
---|---|
dp53lem.1 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp53lem.2 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
dp53lem.3 | c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
dp53lem.4 | p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
dp53lem.5 | p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
Ref | Expression |
---|---|
dp53lemg | p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leor 159 | . 2 p ≤ (a0 ∪ p) | |
2 | dp53lem.1 | . . 3 c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) | |
3 | dp53lem.2 | . . 3 c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) | |
4 | dp53lem.3 | . . 3 c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) | |
5 | dp53lem.4 | . . 3 p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) | |
6 | dp53lem.5 | . . 3 p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) | |
7 | 2, 3, 4, 5, 6 | dp53lemf 1168 | . 2 (a0 ∪ p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
8 | 1, 7 | letr 137 | 1 p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 ax-arg 1153 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: dp53 1170 |
Copyright terms: Public domain | W3C validator |