Proof of Theorem dp53lemf
Step | Hyp | Ref
| Expression |
1 | | leo 158 |
. 2
a0 ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
2 | | dp53lem.5 |
. . . . . . 7
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
3 | | anass 76 |
. . . . . . 7
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
4 | 2, 3 | tr 62 |
. . . . . 6
p = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
5 | | dp53lem.4 |
. . . . . . . . . 10
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
6 | 5 | lan 77 |
. . . . . . . . 9
((a0 ∪ b0) ∩ p0) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
7 | 6 | cm 61 |
. . . . . . . 8
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = ((a0 ∪ b0) ∩ p0) |
8 | | leao4 165 |
. . . . . . . 8
((a0 ∪ b0) ∩ p0) ≤ (a0 ∪ p0) |
9 | 7, 8 | bltr 138 |
. . . . . . 7
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (a0 ∪ p0) |
10 | | lea 160 |
. . . . . . . 8
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (a0 ∪ b0) |
11 | | orcom 73 |
. . . . . . . 8
(a0 ∪ b0) = (b0 ∪ a0) |
12 | 10, 11 | lbtr 139 |
. . . . . . 7
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (b0 ∪ a0) |
13 | 9, 12 | ler2an 173 |
. . . . . 6
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ ((a0 ∪ p0) ∩ (b0 ∪ a0)) |
14 | 4, 13 | bltr 138 |
. . . . 5
p ≤ ((a0 ∪ p0) ∩ (b0 ∪ a0)) |
15 | | leo 158 |
. . . . . . 7
a0 ≤ (a0 ∪ p0) |
16 | 15 | mldual2i 1127 |
. . . . . 6
((a0 ∪ p0) ∩ (b0 ∪ a0)) = (((a0 ∪ p0) ∩ b0) ∪ a0) |
17 | | ancom 74 |
. . . . . . 7
((a0 ∪ p0) ∩ b0) = (b0 ∩ (a0 ∪ p0)) |
18 | 17 | ror 71 |
. . . . . 6
(((a0 ∪ p0) ∩ b0) ∪ a0) = ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
19 | 16, 18 | tr 62 |
. . . . 5
((a0 ∪ p0) ∩ (b0 ∪ a0)) = ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
20 | 14, 19 | lbtr 139 |
. . . 4
p ≤ ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
21 | 1 | lelor 166 |
. . . 4
((b0 ∩ (a0 ∪ p0)) ∪ a0) ≤ ((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
22 | 20, 21 | letr 137 |
. . 3
p ≤ ((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
23 | | dp53lem.1 |
. . . . 5
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
24 | | dp53lem.2 |
. . . . 5
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
25 | | dp53lem.3 |
. . . . 5
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
26 | 23, 24, 25, 5, 2 | dp53leme 1167 |
. . . 4
(b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
27 | 26 | df-le2 131 |
. . 3
((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) = (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
28 | 22, 27 | lbtr 139 |
. 2
p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
29 | 1, 28 | lel2or 170 |
1
(a0 ∪ p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |