| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > fh3rc | GIF version | ||
| Description: Foulis-Holland Theorem. (Contributed by NM, 6-Aug-2001.) |
| Ref | Expression |
|---|---|
| fh.1 | a C b |
| fh.2 | a C c |
| Ref | Expression |
|---|---|
| fh3rc | ((c ∩ b) ∪ a) = ((c ∪ a) ∩ (b ∪ a)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fh.1 | . . 3 a C b | |
| 2 | fh.2 | . . 3 a C c | |
| 3 | 1, 2 | fh3r 475 | . 2 ((b ∩ c) ∪ a) = ((b ∪ a) ∩ (c ∪ a)) |
| 4 | ancom 74 | . . 3 (c ∩ b) = (b ∩ c) | |
| 5 | 4 | ax-r5 38 | . 2 ((c ∩ b) ∪ a) = ((b ∩ c) ∪ a) |
| 6 | ancom 74 | . 2 ((c ∪ a) ∩ (b ∪ a)) = ((b ∪ a) ∩ (c ∪ a)) | |
| 7 | 3, 5, 6 | 3tr1 63 | 1 ((c ∩ b) ∪ a) = ((c ∪ a) ∩ (b ∪ a)) |
| Colors of variables: term |
| Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |