| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > fh4rc | GIF version | ||
| Description: Foulis-Holland Theorem. (Contributed by NM, 20-Sep-1998.) |
| Ref | Expression |
|---|---|
| fh.1 | a C b |
| fh.2 | a C c |
| Ref | Expression |
|---|---|
| fh4rc | ((c ∩ a) ∪ b) = ((c ∪ b) ∩ (a ∪ b)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fh.1 | . . 3 a C b | |
| 2 | fh.2 | . . 3 a C c | |
| 3 | 1, 2 | fh4r 476 | . 2 ((a ∩ c) ∪ b) = ((a ∪ b) ∩ (c ∪ b)) |
| 4 | ancom 74 | . . 3 (c ∩ a) = (a ∩ c) | |
| 5 | 4 | ax-r5 38 | . 2 ((c ∩ a) ∪ b) = ((a ∩ c) ∪ b) |
| 6 | ancom 74 | . 2 ((c ∪ b) ∩ (a ∪ b)) = ((a ∪ b) ∩ (c ∪ b)) | |
| 7 | 3, 5, 6 | 3tr1 63 | 1 ((c ∩ a) ∪ b) = ((c ∪ b) ∩ (a ∪ b)) |
| Colors of variables: term |
| Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: gsth 489 orbi 842 negantlem2 849 |
| Copyright terms: Public domain | W3C validator |