Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > fh3r | GIF version |
Description: Foulis-Holland Theorem. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
fh.1 | a C b |
fh.2 | a C c |
Ref | Expression |
---|---|
fh3r | ((b ∩ c) ∪ a) = ((b ∪ a) ∩ (c ∪ a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fh.1 | . . 3 a C b | |
2 | fh.2 | . . 3 a C c | |
3 | 1, 2 | fh3 471 | . 2 (a ∪ (b ∩ c)) = ((a ∪ b) ∩ (a ∪ c)) |
4 | ax-a2 31 | . 2 ((b ∩ c) ∪ a) = (a ∪ (b ∩ c)) | |
5 | ax-a2 31 | . . 3 (b ∪ a) = (a ∪ b) | |
6 | ax-a2 31 | . . 3 (c ∪ a) = (a ∪ c) | |
7 | 5, 6 | 2an 79 | . 2 ((b ∪ a) ∩ (c ∪ a)) = ((a ∪ b) ∩ (a ∪ c)) |
8 | 3, 4, 7 | 3tr1 63 | 1 ((b ∩ c) ∪ a) = ((b ∪ a) ∩ (c ∪ a)) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: fh3rc 481 ud1lem1 560 ud4lem2 582 ud4lem3b 584 ud5lem3 594 u2lembi 721 u4lem6 768 u1lem11 780 u3lem13b 790 mhlem 876 gomaex3lem2 915 gomaex3lem3 916 |
Copyright terms: Public domain | W3C validator |