Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  gomaex3h5 GIF version

Theorem gomaex3h5 906
 Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.)
Hypotheses
Ref Expression
gomaex3h5.11 r = ((p1 q) ∩ (cd))
gomaex3h5.16 k = r
gomaex3h5.17 m = (p1 q)
Assertion
Ref Expression
gomaex3h5 km

Proof of Theorem gomaex3h5
StepHypRef Expression
1 gomaex3h5.11 . . 3 r = ((p1 q) ∩ (cd))
2 lea 160 . . 3 ((p1 q) ∩ (cd)) ≤ (p1 q)
31, 2bltr 138 . 2 r ≤ (p1 q)
4 gomaex3h5.16 . 2 k = r
5 gomaex3h5.17 . . 3 m = (p1 q)
65ax-r4 37 . 2 m = (p1 q)
73, 4, 6le3tr1 140 1 km
 Colors of variables: term Syntax hints:   = wb 1   ≤ wle 2  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →1 wi1 12 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-a 40  df-le1 130  df-le2 131 This theorem is referenced by:  gomaex3lem5  918
 Copyright terms: Public domain W3C validator