QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  gomaex3h6 GIF version

Theorem gomaex3h6 907
Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.)
Hypotheses
Ref Expression
gomaex3h6.17 m = (p1 q)
gomaex3h6.18 n = (p1 q)
Assertion
Ref Expression
gomaex3h6 mn

Proof of Theorem gomaex3h6
StepHypRef Expression
1 leid 148 . . 3 (p1 q) ≤ (p1 q)
2 ax-a1 30 . . 3 (p1 q) = (p1 q)
31, 2lbtr 139 . 2 (p1 q) ≤ (p1 q)
4 gomaex3h6.17 . 2 m = (p1 q)
5 gomaex3h6.18 . . 3 n = (p1 q)
65ax-r4 37 . 2 n = (p1 q)
73, 4, 6le3tr1 140 1 mn
Colors of variables: term
Syntax hints:   = wb 1  wle 2   wn 4  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  gomaex3lem5  918
  Copyright terms: Public domain W3C validator