| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gomaex3h6 | GIF version | ||
| Description: Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
| Ref | Expression |
|---|---|
| gomaex3h6.17 | m = (p⊥ →1 q) |
| gomaex3h6.18 | n = (p⊥ →1 q)⊥ |
| Ref | Expression |
|---|---|
| gomaex3h6 | m ≤ n⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leid 148 | . . 3 (p⊥ →1 q) ≤ (p⊥ →1 q) | |
| 2 | ax-a1 30 | . . 3 (p⊥ →1 q) = (p⊥ →1 q)⊥ ⊥ | |
| 3 | 1, 2 | lbtr 139 | . 2 (p⊥ →1 q) ≤ (p⊥ →1 q)⊥ ⊥ |
| 4 | gomaex3h6.17 | . 2 m = (p⊥ →1 q) | |
| 5 | gomaex3h6.18 | . . 3 n = (p⊥ →1 q)⊥ | |
| 6 | 5 | ax-r4 37 | . 2 n⊥ = (p⊥ →1 q)⊥ ⊥ |
| 7 | 3, 4, 6 | le3tr1 140 | 1 m ≤ n⊥ |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: gomaex3lem5 918 |
| Copyright terms: Public domain | W3C validator |