Proof of Theorem i2or
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. . . 4
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
2 | | lea 160 |
. . . . . . 7
(a ∩ b) ≤ a |
3 | 2 | lecon 154 |
. . . . . 6
a⊥ ≤ (a ∩ b)⊥ |
4 | 3 | leran 153 |
. . . . 5
(a⊥ ∩ c⊥ ) ≤ ((a ∩ b)⊥ ∩ c⊥ ) |
5 | 4 | lelor 166 |
. . . 4
(c ∪ (a⊥ ∩ c⊥ )) ≤ (c ∪ ((a
∩ b)⊥ ∩ c⊥ )) |
6 | 1, 5 | bltr 138 |
. . 3
(a →2 c) ≤ (c ∪
((a ∩ b)⊥ ∩ c⊥ )) |
7 | | df-i2 45 |
. . . 4
(b →2 c) = (c ∪
(b⊥ ∩ c⊥ )) |
8 | | lear 161 |
. . . . . . 7
(a ∩ b) ≤ b |
9 | 8 | lecon 154 |
. . . . . 6
b⊥ ≤ (a ∩ b)⊥ |
10 | 9 | leran 153 |
. . . . 5
(b⊥ ∩ c⊥ ) ≤ ((a ∩ b)⊥ ∩ c⊥ ) |
11 | 10 | lelor 166 |
. . . 4
(c ∪ (b⊥ ∩ c⊥ )) ≤ (c ∪ ((a
∩ b)⊥ ∩ c⊥ )) |
12 | 7, 11 | bltr 138 |
. . 3
(b →2 c) ≤ (c ∪
((a ∩ b)⊥ ∩ c⊥ )) |
13 | 6, 12 | lel2or 170 |
. 2
((a →2 c) ∪ (b
→2 c)) ≤ (c ∪ ((a
∩ b)⊥ ∩ c⊥ )) |
14 | | df-i2 45 |
. . 3
((a ∩ b) →2 c) = (c ∪
((a ∩ b)⊥ ∩ c⊥ )) |
15 | 14 | ax-r1 35 |
. 2
(c ∪ ((a ∩ b)⊥ ∩ c⊥ )) = ((a ∩ b)
→2 c) |
16 | 13, 15 | lbtr 139 |
1
((a →2 c) ∪ (b
→2 c)) ≤ ((a ∩ b)
→2 c) |