![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > lelor | GIF version |
Description: Add disjunct to left of both sides. (Contributed by NM, 25-Oct-1997.) |
Ref | Expression |
---|---|
lel.1 | a ≤ b |
Ref | Expression |
---|---|
lelor | (c ∪ a) ≤ (c ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lel.1 | . . 3 a ≤ b | |
2 | 1 | leror 152 | . 2 (a ∪ c) ≤ (b ∪ c) |
3 | ax-a2 31 | . 2 (c ∪ a) = (a ∪ c) | |
4 | ax-a2 31 | . 2 (c ∪ b) = (b ∪ c) | |
5 | 2, 3, 4 | le3tr1 140 | 1 (c ∪ a) ≤ (c ∪ b) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: le2or 168 ka4lemo 228 wlem1 243 wql1lem 287 nom14 311 nom20 313 nom21 314 nom22 315 go1 343 i2or 344 i1or 345 i5lei4 350 k1-8a 355 2vwomlem 365 wr5-2v 366 wdf-c2 384 ska2 432 ska4 433 i3or 497 i3orlem3 554 i2bi 722 u12lem 771 u3lem14mp 794 u3lemax4 796 u3lemax5 797 test2 803 3vded11 814 3vded22 818 sadm3 838 elimconslem 867 elimcons 868 govar2 897 oas 925 oat 927 oau 929 oa23 936 oa4lem1 937 oa4lem2 938 oa3to4lem1 945 oa3to4lem2 946 oa3to4lem3 947 oa4to6lem1 960 oa4to6lem2 961 oa4to6lem3 962 oa4to6lem4 963 oa4btoc 966 oa4uto4g 975 oa4uto4 977 oalem1 1005 mloa 1018 oadistc0 1021 lem3.3.5 1055 lem3.4.3 1076 lem4.6.6i0j1 1086 lem4.6.6i1j0 1090 lem4.6.6i1j3 1092 lem4.6.6i2j1 1094 ml3le 1127 dp15lema 1152 dp15leme 1156 dp53lema 1161 dp53lemf 1166 dp35lem0 1177 dp34 1179 dp41lemh 1188 xdp41 1196 xdp15 1197 xdp53 1198 xxdp41 1199 xxdp15 1200 xxdp53 1201 xdp45lem 1202 xdp43lem 1203 xdp45 1204 xdp43 1205 3dp43 1206 |
Copyright terms: Public domain | W3C validator |