Proof of Theorem i1or
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. . . 4
(c →1 a) = (c⊥ ∪ (c ∩ a)) |
2 | | leo 158 |
. . . . . 6
a ≤ (a ∪ b) |
3 | 2 | lelan 167 |
. . . . 5
(c ∩ a) ≤ (c ∩
(a ∪ b)) |
4 | 3 | lelor 166 |
. . . 4
(c⊥ ∪ (c ∩ a)) ≤
(c⊥ ∪ (c ∩ (a ∪
b))) |
5 | 1, 4 | bltr 138 |
. . 3
(c →1 a) ≤ (c⊥ ∪ (c ∩ (a ∪
b))) |
6 | | df-i1 44 |
. . . 4
(c →1 b) = (c⊥ ∪ (c ∩ b)) |
7 | | leor 159 |
. . . . . 6
b ≤ (a ∪ b) |
8 | 7 | lelan 167 |
. . . . 5
(c ∩ b) ≤ (c ∩
(a ∪ b)) |
9 | 8 | lelor 166 |
. . . 4
(c⊥ ∪ (c ∩ b)) ≤
(c⊥ ∪ (c ∩ (a ∪
b))) |
10 | 6, 9 | bltr 138 |
. . 3
(c →1 b) ≤ (c⊥ ∪ (c ∩ (a ∪
b))) |
11 | 5, 10 | lel2or 170 |
. 2
((c →1 a) ∪ (c
→1 b)) ≤ (c⊥ ∪ (c ∩ (a ∪
b))) |
12 | | df-i1 44 |
. . 3
(c →1 (a ∪ b)) =
(c⊥ ∪ (c ∩ (a ∪
b))) |
13 | 12 | ax-r1 35 |
. 2
(c⊥ ∪ (c ∩ (a ∪
b))) = (c →1 (a ∪ b)) |
14 | 11, 13 | lbtr 139 |
1
((c →1 a) ∪ (c
→1 b)) ≤ (c →1 (a ∪ b)) |