Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > orbile | GIF version |
Description: Disjunction of biconditionals. (Contributed by NM, 5-Jul-2000.) |
Ref | Expression |
---|---|
orbile | ((a ≡ c) ∪ (b ≡ c)) ≤ (((a ∩ b) →2 c) ∩ (c →1 (a ∪ b))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi 842 | . 2 ((a ≡ c) ∪ (b ≡ c)) = (((a →2 c) ∪ (b →2 c)) ∩ ((c →1 a) ∪ (c →1 b))) | |
2 | i2or 344 | . . 3 ((a →2 c) ∪ (b →2 c)) ≤ ((a ∩ b) →2 c) | |
3 | i1or 345 | . . 3 ((c →1 a) ∪ (c →1 b)) ≤ (c →1 (a ∪ b)) | |
4 | 2, 3 | le2an 169 | . 2 (((a →2 c) ∪ (b →2 c)) ∩ ((c →1 a) ∪ (c →1 b))) ≤ (((a ∩ b) →2 c) ∩ (c →1 (a ∪ b))) |
5 | 1, 4 | bltr 138 | 1 ((a ≡ c) ∪ (b ≡ c)) ≤ (((a ∩ b) →2 c) ∩ (c →1 (a ∪ b))) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ≡ tb 5 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: mlaconj4 844 mlaconj 845 mlaconjolem 885 |
Copyright terms: Public domain | W3C validator |