Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i3orlem6 | GIF version |
Description: Lemma for Kalmbach implication OR builder. (Contributed by NM, 11-Nov-1997.) |
Ref | Expression |
---|---|
i3orlem6 | ((a →3 b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) = (((a ∪ b) ∩ (a⊥ →3 b⊥ )) ∪ ((a ∪ c) →3 (b ∪ c))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a3 32 | . . 3 (((a ∩ b) ∪ (a →3 b)⊥ ) ∪ ((a ∪ c) →3 (b ∪ c))) = ((a ∩ b) ∪ ((a →3 b)⊥ ∪ ((a ∪ c) →3 (b ∪ c)))) | |
2 | 1 | ax-r1 35 | . 2 ((a ∩ b) ∪ ((a →3 b)⊥ ∪ ((a ∪ c) →3 (b ∪ c)))) = (((a ∩ b) ∪ (a →3 b)⊥ ) ∪ ((a ∪ c) →3 (b ∪ c))) |
3 | i3orlem2 553 | . . . 4 (a ∩ b) ≤ ((a ∪ c) →3 (b ∪ c)) | |
4 | 3 | lerr 150 | . . 3 (a ∩ b) ≤ ((a →3 b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) |
5 | 4 | df-le2 131 | . 2 ((a ∩ b) ∪ ((a →3 b)⊥ ∪ ((a ∪ c) →3 (b ∪ c)))) = ((a →3 b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) |
6 | oi3ai3 503 | . . 3 ((a ∩ b) ∪ (a →3 b)⊥ ) = ((a ∪ b) ∩ (a⊥ →3 b⊥ )) | |
7 | 6 | ax-r5 38 | . 2 (((a ∩ b) ∪ (a →3 b)⊥ ) ∪ ((a ∪ c) →3 (b ∪ c))) = (((a ∪ b) ∩ (a⊥ →3 b⊥ )) ∪ ((a ∪ c) →3 (b ∪ c))) |
8 | 2, 5, 7 | 3tr2 64 | 1 ((a →3 b)⊥ ∪ ((a ∪ c) →3 (b ∪ c))) = (((a ∪ b) ∩ (a⊥ →3 b⊥ )) ∪ ((a ∪ c) →3 (b ∪ c))) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: i3orlem7 558 i3orlem8 559 |
Copyright terms: Public domain | W3C validator |