Proof of Theorem oi3ai3
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . . . 6
(a ∩ b) ≤ a |
2 | | leo 158 |
. . . . . 6
a ≤ (a ∪ b) |
3 | 1, 2 | letr 137 |
. . . . 5
(a ∩ b) ≤ (a ∪
b) |
4 | 3 | lecom 180 |
. . . 4
(a ∩ b) C (a
∪ b) |
5 | | coman1 185 |
. . . . . 6
(a ∩ b) C a |
6 | | ancom 74 |
. . . . . . . 8
(a ∩ b) = (b ∩
a) |
7 | | coman1 185 |
. . . . . . . 8
(b ∩ a) C b |
8 | 6, 7 | bctr 181 |
. . . . . . 7
(a ∩ b) C b |
9 | 8 | comcom2 183 |
. . . . . 6
(a ∩ b) C b⊥ |
10 | 5, 9 | com2an 484 |
. . . . 5
(a ∩ b) C (a
∩ b⊥
) |
11 | 5 | comcom2 183 |
. . . . . 6
(a ∩ b) C a⊥ |
12 | 5, 9 | com2or 483 |
. . . . . 6
(a ∩ b) C (a
∪ b⊥
) |
13 | 11, 12 | com2an 484 |
. . . . 5
(a ∩ b) C (a⊥ ∩ (a ∪ b⊥ )) |
14 | 10, 13 | com2or 483 |
. . . 4
(a ∩ b) C ((a
∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))) |
15 | 4, 14 | fh3 471 |
. . 3
((a ∩ b) ∪ ((a
∪ b) ∩ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = (((a ∩ b) ∪
(a ∪ b)) ∩ ((a
∩ b) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) |
16 | 3 | df-le2 131 |
. . . 4
((a ∩ b) ∪ (a
∪ b)) = (a ∪ b) |
17 | | ax-a3 32 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a⊥ ∩ (a ∪ b⊥ ))) = ((a ∩ b) ∪
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) |
18 | 17 | ax-r1 35 |
. . . . 5
((a ∩ b) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ (a⊥ ∩ (a ∪ b⊥ ))) |
19 | | ax-a2 31 |
. . . . . 6
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a ∩ b⊥ ) ∪ (a ∩ b)) |
20 | 19 | ax-r5 38 |
. . . . 5
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a⊥ ∩ (a ∪ b⊥ ))) = (((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ ))) |
21 | 18, 20 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = (((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ ))) |
22 | 16, 21 | 2an 79 |
. . 3
(((a ∩ b) ∪ (a
∪ b)) ∩ ((a ∩ b) ∪
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = ((a ∪ b) ∩
(((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ )))) |
23 | 15, 22 | ax-r2 36 |
. 2
((a ∩ b) ∪ ((a
∪ b) ∩ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = ((a ∪ b) ∩
(((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ )))) |
24 | | ni32 502 |
. . 3
(a →3 b)⊥ = ((a ∪ b) ∩
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) |
25 | 24 | lor 70 |
. 2
((a ∩ b) ∪ (a
→3 b)⊥ ) =
((a ∩ b) ∪ ((a
∪ b) ∩ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) |
26 | | i3n1 249 |
. . 3
(a⊥ →3
b⊥ ) = (((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ ))) |
27 | 26 | lan 77 |
. 2
((a ∪ b) ∩ (a⊥ →3 b⊥ )) = ((a ∪ b) ∩
(((a ∩ b⊥ ) ∪ (a ∩ b))
∪ (a⊥ ∩ (a ∪ b⊥ )))) |
28 | 23, 25, 27 | 3tr1 63 |
1
((a ∩ b) ∪ (a
→3 b)⊥ ) =
((a ∪ b) ∩ (a⊥ →3 b⊥ )) |