Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lerr | GIF version |
Description: Add disjunct to right of l.e. (Contributed by NM, 11-Nov-1997.) |
Ref | Expression |
---|---|
le.1 | a ≤ b |
Ref | Expression |
---|---|
lerr | a ≤ (c ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le.1 | . . 3 a ≤ b | |
2 | 1 | ler 149 | . 2 a ≤ (b ∪ c) |
3 | ax-a2 31 | . 2 (b ∪ c) = (c ∪ b) | |
4 | 2, 3 | lbtr 139 | 1 a ≤ (c ∪ b) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: ska2 432 i3orlem6 557 1oa 820 mhlem 876 marsdenlem3 882 cancellem 891 lem3.3.7i4e1 1069 lem4.6.6i2j1 1096 lem4.6.6i2j4 1097 lem4.6.6i3j1 1099 lem4.6.6i4j2 1101 vneulem6 1136 vneulemexp 1148 l42modlem1 1149 dp53lemc 1165 dp35lemc 1175 dp32 1196 xdp53 1200 xxdp53 1203 xdp43lem 1205 xdp43 1207 3dp43 1208 oadp35lemc 1211 |
Copyright terms: Public domain | W3C validator |