![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > lerr | GIF version |
Description: Add disjunct to right of l.e. |
Ref | Expression |
---|---|
le.1 | a ≤ b |
Ref | Expression |
---|---|
lerr | a ≤ (c ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le.1 | . . 3 a ≤ b | |
2 | 1 | ler 149 | . 2 a ≤ (b ∪ c) |
3 | ax-a2 31 | . 2 (b ∪ c) = (c ∪ b) | |
4 | 2, 3 | lbtr 139 | 1 a ≤ (c ∪ b) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: i3orlem6 557 1oa 820 mhlem 876 marsdenlem3 882 cancellem 891 lem3.3.7i4e1 1069 lem4.6.6i2j1 1094 lem4.6.6i2j4 1095 lem4.6.6i3j1 1097 lem4.6.6i4j2 1099 vneulem6 1134 vneulemexp 1146 l42modlem1 1147 dp53lemc 1163 dp35lemc 1173 dp32 1194 xdp53 1198 xxdp53 1201 xdp43lem 1203 xdp43 1205 3dp43 1206 oadp35lemc 1209 |
Copyright terms: Public domain | W3C validator |