QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lerr GIF version

Theorem lerr 150
Description: Add disjunct to right of l.e. (Contributed by NM, 11-Nov-1997.)
Hypothesis
Ref Expression
le.1 ab
Assertion
Ref Expression
lerr a ≤ (cb)

Proof of Theorem lerr
StepHypRef Expression
1 le.1 . . 3 ab
21ler 149 . 2 a ≤ (bc)
3 ax-a2 31 . 2 (bc) = (cb)
42, 3lbtr 139 1 a ≤ (cb)
Colors of variables: term
Syntax hints:  wle 2  wo 6
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-le1 130  df-le2 131
This theorem is referenced by:  ska2  432  i3orlem6  557  1oa  820  mhlem  876  marsdenlem3  882  cancellem  891  lem3.3.7i4e1  1069  lem4.6.6i2j1  1096  lem4.6.6i2j4  1097  lem4.6.6i3j1  1099  lem4.6.6i4j2  1101  vneulem6  1136  vneulemexp  1148  l42modlem1  1149  dp53lemc  1165  dp35lemc  1175  dp32  1196  xdp53  1200  xxdp53  1203  xdp43lem  1205  xdp43  1207  3dp43  1208  oadp35lemc  1211
  Copyright terms: Public domain W3C validator