Proof of Theorem i5lei1
Step | Hyp | Ref
| Expression |
1 | | ax-a3 32 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
2 | | ax-a2 31 |
. . . 4
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) |
3 | 1, 2 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) |
4 | | lea 160 |
. . . . 5
(a⊥ ∩ b) ≤ a⊥ |
5 | | lea 160 |
. . . . 5
(a⊥ ∩ b⊥ ) ≤ a⊥ |
6 | 4, 5 | lel2or 170 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
7 | 6 | leror 152 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) ≤
(a⊥ ∪ (a ∩ b)) |
8 | 3, 7 | bltr 138 |
. 2
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ (a ∩ b)) |
9 | | df-i5 48 |
. 2
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
10 | | df-i1 44 |
. 2
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
11 | 8, 9, 10 | le3tr1 140 |
1
(a →5 b) ≤ (a
→1 b) |