![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > i5lei1 | GIF version |
Description: Relevance implication is less than or equal to Sasaki implication. (Contributed by NM, 26-Jun-2003.) |
Ref | Expression |
---|---|
i5lei1 | (a →5 b) ≤ (a →1 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a3 32 | . . . 4 (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) | |
2 | ax-a2 31 | . . . 4 ((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) | |
3 | 1, 2 | ax-r2 36 | . . 3 (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) |
4 | lea 160 | . . . . 5 (a⊥ ∩ b) ≤ a⊥ | |
5 | lea 160 | . . . . 5 (a⊥ ∩ b⊥ ) ≤ a⊥ | |
6 | 4, 5 | lel2or 170 | . . . 4 ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
7 | 6 | leror 152 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ b)) ≤ (a⊥ ∪ (a ∩ b)) |
8 | 3, 7 | bltr 138 | . 2 (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ (a ∩ b)) |
9 | df-i5 48 | . 2 (a →5 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) | |
10 | df-i1 44 | . 2 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
11 | 8, 9, 10 | le3tr1 140 | 1 (a →5 b) ≤ (a →1 b) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →5 wi5 16 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-i5 48 df-le1 130 df-le2 131 |
This theorem is referenced by: oago3.21x 890 |
Copyright terms: Public domain | W3C validator |