Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i5lei2 | GIF version |
Description: Relevance implication is less than or equal to Dishkant implication. (Contributed by NM, 26-Jun-2003.) |
Ref | Expression |
---|---|
i5lei2 | (a →5 b) ≤ (a →2 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lear 161 | . . . 4 (a ∩ b) ≤ b | |
2 | lear 161 | . . . 4 (a⊥ ∩ b) ≤ b | |
3 | 1, 2 | lel2or 170 | . . 3 ((a ∩ b) ∪ (a⊥ ∩ b)) ≤ b |
4 | 3 | leror 152 | . 2 (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ≤ (b ∪ (a⊥ ∩ b⊥ )) |
5 | df-i5 48 | . 2 (a →5 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) | |
6 | df-i2 45 | . 2 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
7 | 4, 5, 6 | le3tr1 140 | 1 (a →5 b) ≤ (a →2 b) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 →5 wi5 16 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-i5 48 df-le1 130 df-le2 131 |
This theorem is referenced by: oago3.21x 890 wdwom 1106 |
Copyright terms: Public domain | W3C validator |