Proof of Theorem i5lei3
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. . . 4
b ≤ (a⊥ ∪ b) |
2 | 1 | lelan 167 |
. . 3
(a ∩ b) ≤ (a ∩
(a⊥ ∪ b)) |
3 | 2 | leror 152 |
. 2
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ≤ ((a ∩ (a⊥ ∪ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
4 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
5 | | ax-a3 32 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
6 | 4, 5 | ax-r2 36 |
. 2
(a →5 b) = ((a ∩
b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
7 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
8 | | ax-a2 31 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a ∩
(a⊥ ∪ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
9 | 7, 8 | ax-r2 36 |
. 2
(a →3 b) = ((a ∩
(a⊥ ∪ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
10 | 3, 6, 9 | le3tr1 140 |
1
(a →5 b) ≤ (a
→3 b) |