![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > i5lei3 | GIF version |
Description: Relevance implication is less than or equal to Kalmbach implication. (Contributed by NM, 26-Jun-2003.) |
Ref | Expression |
---|---|
i5lei3 | (a →5 b) ≤ (a →3 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leor 159 | . . . 4 b ≤ (a⊥ ∪ b) | |
2 | 1 | lelan 167 | . . 3 (a ∩ b) ≤ (a ∩ (a⊥ ∪ b)) |
3 | 2 | leror 152 | . 2 ((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ≤ ((a ∩ (a⊥ ∪ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
4 | df-i5 48 | . . 3 (a →5 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) | |
5 | ax-a3 32 | . . 3 (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) | |
6 | 4, 5 | ax-r2 36 | . 2 (a →5 b) = ((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
7 | df-i3 46 | . . 3 (a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) | |
8 | ax-a2 31 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a ∩ (a⊥ ∪ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) | |
9 | 7, 8 | ax-r2 36 | . 2 (a →3 b) = ((a ∩ (a⊥ ∪ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
10 | 3, 6, 9 | le3tr1 140 | 1 (a →5 b) ≤ (a →3 b) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 →5 wi5 16 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i3 46 df-i5 48 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |