Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lelan | GIF version |
Description: Add conjunct to left of both sides. (Contributed by NM, 25-Oct-1997.) |
Ref | Expression |
---|---|
lel.1 | a ≤ b |
Ref | Expression |
---|---|
lelan | (c ∩ a) ≤ (c ∩ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lel.1 | . . 3 a ≤ b | |
2 | 1 | leran 153 | . 2 (a ∩ c) ≤ (b ∩ c) |
3 | ancom 74 | . 2 (c ∩ a) = (a ∩ c) | |
4 | ancom 74 | . 2 (c ∩ b) = (b ∩ c) | |
5 | 2, 3, 4 | le3tr1 140 | 1 (c ∩ a) ≤ (c ∩ b) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: le2an 169 go1 343 i1or 345 i5lei3 349 wr5-2v 366 ortha 438 gsth 489 ud4lem1a 577 test 802 3vded11 814 mlaconj 845 elimconslem 867 elimcons 868 kb10iii 893 oas 925 oatr 928 oaur 930 oaidlem2 931 oaidlem2g 932 oa3to4lem1 945 oa3to4lem2 946 oa3to4lem3 947 oa4to6lem1 960 oa4to6lem2 961 oa4to6lem3 962 oa4to6lem4 963 oa4btoc 966 oa4uto4g 975 oa4uto4 977 oa3-1to5 993 oalem1 1005 oadist2a 1007 oagen1 1014 oagen2 1016 oadistc0 1021 oadistd 1023 4oagen1 1042 4oadist 1044 lem3.3.5 1055 dp15lemf 1159 dp35lem0 1179 dp41lemc 1185 dp41lemh 1190 dp41leml 1193 xdp41 1198 xdp15 1199 xxdp41 1201 xxdp15 1202 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |