Proof of Theorem k1-7
Step | Hyp | Ref
| Expression |
1 | | anor3 90 |
. . . . 5
((x ∩ c⊥ )⊥ ∩
(x ∩ c⊥ ⊥
)⊥ ) = ((x ∩ c⊥ ) ∪ (x ∩ c⊥ ⊥
))⊥ |
2 | 1 | cm 61 |
. . . 4
((x ∩ c⊥ ) ∪ (x ∩ c⊥ ⊥
))⊥ = ((x ∩ c⊥ )⊥ ∩
(x ∩ c⊥ ⊥
)⊥ ) |
3 | | k1-7.1 |
. . . . . 6
x = ((x ∩ c) ∪
(x ∩ c⊥ )) |
4 | | ax-a1 30 |
. . . . . . . 8
c = c⊥
⊥ |
5 | 4 | lan 77 |
. . . . . . 7
(x ∩ c) = (x ∩
c⊥ ⊥
) |
6 | 5 | ror 71 |
. . . . . 6
((x ∩ c) ∪ (x
∩ c⊥ )) = ((x ∩ c⊥ ⊥ ) ∪
(x ∩ c⊥ )) |
7 | | orcom 73 |
. . . . . 6
((x ∩ c⊥ ⊥ ) ∪
(x ∩ c⊥ )) = ((x ∩ c⊥ ) ∪ (x ∩ c⊥ ⊥
)) |
8 | 3, 6, 7 | 3tr 65 |
. . . . 5
x = ((x ∩ c⊥ ) ∪ (x ∩ c⊥ ⊥
)) |
9 | 8 | con4 69 |
. . . 4
x⊥ = ((x ∩ c⊥ ) ∪ (x ∩ c⊥ ⊥
))⊥ |
10 | | oran3 93 |
. . . . 5
(x⊥ ∪ c⊥ ⊥ ) = (x ∩ c⊥
)⊥ |
11 | | oran2 92 |
. . . . 5
(x⊥ ∪ c⊥ ) = (x ∩ c⊥ ⊥
)⊥ |
12 | 10, 11 | 2an 79 |
. . . 4
((x⊥ ∪ c⊥ ⊥ ) ∩
(x⊥ ∪ c⊥ )) = ((x ∩ c⊥ )⊥ ∩
(x ∩ c⊥ ⊥
)⊥ ) |
13 | 2, 9, 12 | 3tr1 63 |
. . 3
x⊥ = ((x⊥ ∪ c⊥ ⊥ ) ∩
(x⊥ ∪ c⊥ )) |
14 | 13 | ran 78 |
. 2
(x⊥ ∩ c⊥ ) = (((x⊥ ∪ c⊥ ⊥ ) ∩
(x⊥ ∪ c⊥ )) ∩ c⊥ ) |
15 | 4 | lor 70 |
. . . . . 6
(x⊥ ∪ c) = (x⊥ ∪ c⊥ ⊥
) |
16 | 15 | ran 78 |
. . . . 5
((x⊥ ∪ c) ∩ (x⊥ ∪ c⊥ )) = ((x⊥ ∪ c⊥ ⊥ ) ∩
(x⊥ ∪ c⊥ )) |
17 | 16 | ran 78 |
. . . 4
(((x⊥ ∪
c) ∩ (x⊥ ∪ c⊥ )) ∩ c⊥ ) = (((x⊥ ∪ c⊥ ⊥ ) ∩
(x⊥ ∪ c⊥ )) ∩ c⊥ ) |
18 | 17 | cm 61 |
. . 3
(((x⊥ ∪
c⊥ ⊥ )
∩ (x⊥ ∪ c⊥ )) ∩ c⊥ ) = (((x⊥ ∪ c) ∩ (x⊥ ∪ c⊥ )) ∩ c⊥ ) |
19 | | anass 76 |
. . 3
(((x⊥ ∪
c) ∩ (x⊥ ∪ c⊥ )) ∩ c⊥ ) = ((x⊥ ∪ c) ∩ ((x⊥ ∪ c⊥ ) ∩ c⊥ )) |
20 | 18, 19 | tr 62 |
. 2
(((x⊥ ∪
c⊥ ⊥ )
∩ (x⊥ ∪ c⊥ )) ∩ c⊥ ) = ((x⊥ ∪ c) ∩ ((x⊥ ∪ c⊥ ) ∩ c⊥ )) |
21 | | ancom 74 |
. . . 4
((x⊥ ∪ c⊥ ) ∩ c⊥ ) = (c⊥ ∩ (x⊥ ∪ c⊥ )) |
22 | | ax-a2 31 |
. . . . 5
(x⊥ ∪ c⊥ ) = (c⊥ ∪ x⊥ ) |
23 | 22 | lan 77 |
. . . 4
(c⊥ ∩ (x⊥ ∪ c⊥ )) = (c⊥ ∩ (c⊥ ∪ x⊥ )) |
24 | | anabs 121 |
. . . 4
(c⊥ ∩ (c⊥ ∪ x⊥ )) = c⊥ |
25 | 21, 23, 24 | 3tr 65 |
. . 3
((x⊥ ∪ c⊥ ) ∩ c⊥ ) = c⊥ |
26 | 25 | lan 77 |
. 2
((x⊥ ∪ c) ∩ ((x⊥ ∪ c⊥ ) ∩ c⊥ )) = ((x⊥ ∪ c) ∩ c⊥ ) |
27 | 14, 20, 26 | 3tr 65 |
1
(x⊥ ∩ c⊥ ) = ((x⊥ ∪ c) ∩ c⊥ ) |