Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df2le2 | GIF version |
Description: Alternate definition of "less than or equal to". (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
df2le2.1 | a ≤ b |
Ref | Expression |
---|---|
df2le2 | (a ∩ b) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2le2.1 | . . 3 a ≤ b | |
2 | 1 | df-le2 131 | . 2 (a ∪ b) = b |
3 | 2 | leoa 123 | 1 (a ∩ b) = a |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le2 131 |
This theorem is referenced by: lbtr 139 lel 151 leran 153 lecom 180 lei3 246 nom20 313 nom21 314 nom22 315 nom23 316 nom24 317 k1-8a 355 k1-4 359 wdf-c2 384 gsth 489 dfi3b 499 lem4 511 ud3lem1a 566 ud3lem1d 569 ud3lem3a 572 ud3lem3d 575 ud4lem1a 577 ud4lem1b 578 ud4lem3a 583 ud5lem1b 587 u3lemana 607 u4lemana 608 u4lemab 613 u5lemab 614 i1com 708 u4lem5 764 u4lem6 768 u24lem 770 u1lem8 776 u3lem15 795 bi1o1a 798 biao 799 imp3 841 mlaconj4 844 elimcons2 869 comanblem1 870 mhlem 876 mhlem1 877 mlaconjolem 885 e2ast2 894 e2astlem1 895 gomaex3lem9 922 oas 925 oagen1b 1015 oadistb 1020 oadistc0 1021 oadistc 1022 oadistd 1023 4oagen1b 1043 4oadist 1044 lem3.3.7i4e2 1070 lem3.3.7i5e1 1072 dp41lema 1182 dp41lemb 1183 xdp41 1198 xxdp41 1201 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 testmod2 1215 testmod2expanded 1216 |
Copyright terms: Public domain | W3C validator |