Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > le2an | GIF version |
Description: Conjunction of 2 l.e.'s. (Contributed by NM, 25-Oct-1997.) |
Ref | Expression |
---|---|
le2.1 | a ≤ b |
le2.2 | c ≤ d |
Ref | Expression |
---|---|
le2an | (a ∩ c) ≤ (b ∩ d) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le2.1 | . . 3 a ≤ b | |
2 | 1 | leran 153 | . 2 (a ∩ c) ≤ (b ∩ c) |
3 | le2.2 | . . 3 c ≤ d | |
4 | 3 | lelan 167 | . 2 (b ∩ c) ≤ (b ∩ d) |
5 | 2, 4 | letr 137 | 1 (a ∩ c) ≤ (b ∩ d) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: lel2an 171 ler2an 173 ledi 174 ledio 176 ska4 433 i3orlem2 553 i3orlem3 554 ud4lem1a 577 test2 803 mlaoml 833 orbile 843 mlaconj4 844 mhlem 876 mh 879 mlaconjo 886 oago3.21x 890 e2ast2 894 gon2n 898 go2n4 899 go2n6 901 oa4lem3 939 oa3to4lem3 947 oa4to6lem4 963 oa4btoc 966 oa4uto4g 975 oa4uto4 977 oa3-6lem 980 mloa 1018 l42modlem2 1150 dp53lemc 1165 dp35leme 1173 dp35lemc 1175 dp41lemb 1183 xdp41 1198 xdp53 1200 xxdp41 1201 xxdp53 1203 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 oadp35lemc 1211 |
Copyright terms: Public domain | W3C validator |