QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lecon2 GIF version

Theorem lecon2 156
Description: Contrapositive for l.e. (Contributed by NM, 19-Dec-1998.)
Hypothesis
Ref Expression
lecon2.1 ab
Assertion
Ref Expression
lecon2 ba

Proof of Theorem lecon2
StepHypRef Expression
1 lecon2.1 . . 3 ab
2 ax-a1 30 . . 3 b = b
31, 2lbtr 139 . 2 ab
43lecon1 155 1 ba
Colors of variables: term
Syntax hints:  wle 2   wn 4
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-le1 130  df-le2 131
This theorem is referenced by:  lecon3  157  cancellem  891  kb10iii  893
  Copyright terms: Public domain W3C validator