Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lecon1 | GIF version |
Description: Contrapositive for l.e. (Contributed by NM, 7-Nov-1997.) |
Ref | Expression |
---|---|
lecon1.1 | a⊥ ≤ b⊥ |
Ref | Expression |
---|---|
lecon1 | b ≤ a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lecon1.1 | . . 3 a⊥ ≤ b⊥ | |
2 | 1 | lecon 154 | . 2 b⊥ ⊥ ≤ a⊥ ⊥ |
3 | ax-a1 30 | . 2 b = b⊥ ⊥ | |
4 | ax-a1 30 | . 2 a = a⊥ ⊥ | |
5 | 2, 3, 4 | le3tr1 140 | 1 b ≤ a |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: lecon2 156 lecon3 157 i3le 515 neg3antlem2 865 elimcons 868 oa4v3v 934 oa3to4lem6 950 oa4uto4g 975 oa4uto4 977 |
Copyright terms: Public domain | W3C validator |