QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lecon3 GIF version

Theorem lecon3 157
Description: Contrapositive for l.e. (Contributed by NM, 19-Dec-1998.)
Hypothesis
Ref Expression
lecon3.1 ab
Assertion
Ref Expression
lecon3 ba

Proof of Theorem lecon3
StepHypRef Expression
1 lecon3.1 . . . 4 ab
21lecon 154 . . 3 b a
32lecon2 156 . 2 a b
43lecon1 155 1 ba
Colors of variables: term
Syntax hints:  wle 2   wn 4
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-le1 130  df-le2 131
This theorem is referenced by:  ortha  438  mhlemlem1  874  mhlem  876  e2ast2  894  e2astlem1  895  govar2  897  gomaex3lem2  915  oa3to4lem6  950  oa3to4  951  oa4to6  965  oa3moa3  1029
  Copyright terms: Public domain W3C validator