Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lecon3 | GIF version |
Description: Contrapositive for l.e. (Contributed by NM, 19-Dec-1998.) |
Ref | Expression |
---|---|
lecon3.1 | a ≤ b⊥ |
Ref | Expression |
---|---|
lecon3 | b ≤ a⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lecon3.1 | . . . 4 a ≤ b⊥ | |
2 | 1 | lecon 154 | . . 3 b⊥ ⊥ ≤ a⊥ |
3 | 2 | lecon2 156 | . 2 a⊥ ⊥ ≤ b⊥ |
4 | 3 | lecon1 155 | 1 b ≤ a⊥ |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: ortha 438 mhlemlem1 874 mhlem 876 e2ast2 894 e2astlem1 895 govar2 897 gomaex3lem2 915 oa3to4lem6 950 oa3to4 951 oa4to6 965 oa3moa3 1029 |
Copyright terms: Public domain | W3C validator |