Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ledior | GIF version |
Description: Half of distributive law. (Contributed by NM, 30-Nov-1998.) |
Ref | Expression |
---|---|
ledior | ((b ∩ c) ∪ a) ≤ ((b ∪ a) ∩ (c ∪ a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ledio 176 | . 2 (a ∪ (b ∩ c)) ≤ ((a ∪ b) ∩ (a ∪ c)) | |
2 | ax-a2 31 | . 2 ((b ∩ c) ∪ a) = (a ∪ (b ∩ c)) | |
3 | ax-a2 31 | . . 3 (b ∪ a) = (a ∪ b) | |
4 | ax-a2 31 | . . 3 (c ∪ a) = (a ∪ c) | |
5 | 3, 4 | 2an 79 | . 2 ((b ∪ a) ∩ (c ∪ a)) = ((a ∪ b) ∩ (a ∪ c)) |
6 | 1, 2, 5 | le3tr1 140 | 1 ((b ∩ c) ∪ a) ≤ ((b ∪ a) ∩ (c ∪ a)) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: oadistc0 1021 |
Copyright terms: Public domain | W3C validator |