Proof of Theorem oadistc0
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . . . 5
((a →2 c) ∩ ((a
→2 b) ∩ ((b ∪ c)⊥ ∪ d))) = (((a
→2 b) ∩ ((b ∪ c)⊥ ∪ d)) ∩ (a
→2 c)) |
2 | | oadistc0.1 |
. . . . . . . . 9
d ≤ ((a →2 b) ∩ (a
→2 c)) |
3 | 2 | lelor 166 |
. . . . . . . 8
((b ∪ c)⊥ ∪ d) ≤ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) |
4 | 3 | lelan 167 |
. . . . . . 7
((a →2 b) ∩ ((b
∪ c)⊥ ∪ d)) ≤ ((a
→2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) |
5 | | oal2 999 |
. . . . . . 7
((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
6 | 4, 5 | letr 137 |
. . . . . 6
((a →2 b) ∩ ((b
∪ c)⊥ ∪ d)) ≤ (a
→2 c) |
7 | 6 | df2le2 136 |
. . . . 5
(((a →2 b) ∩ ((b
∪ c)⊥ ∪ d)) ∩ (a
→2 c)) = ((a →2 b) ∩ ((b
∪ c)⊥ ∪ d)) |
8 | 1, 7 | ax-r2 36 |
. . . 4
((a →2 c) ∩ ((a
→2 b) ∩ ((b ∪ c)⊥ ∪ d))) = ((a
→2 b) ∩ ((b ∪ c)⊥ ∪ d)) |
9 | 8 | ax-r1 35 |
. . 3
((a →2 b) ∩ ((b
∪ c)⊥ ∪ d)) = ((a
→2 c) ∩ ((a →2 b) ∩ ((b
∪ c)⊥ ∪ d))) |
10 | | oadistc0.2 |
. . 3
((a →2 c) ∩ ((a
→2 b) ∩ ((b ∪ c)⊥ ∪ d))) ≤ (((a
→2 b) ∩ (b ∪ c)⊥ ) ∪ d) |
11 | 9, 10 | bltr 138 |
. 2
((a →2 b) ∩ ((b
∪ c)⊥ ∪ d)) ≤ (((a
→2 b) ∩ (b ∪ c)⊥ ) ∪ d) |
12 | | ledior 177 |
. . 3
(((a →2 b) ∩ (b
∪ c)⊥ ) ∪ d) ≤ (((a
→2 b) ∪ d) ∩ ((b
∪ c)⊥ ∪ d)) |
13 | | ax-a2 31 |
. . . . 5
((a →2 b) ∪ d) =
(d ∪ (a →2 b)) |
14 | | lea 160 |
. . . . . . 7
((a →2 b) ∩ (a
→2 c)) ≤ (a →2 b) |
15 | 2, 14 | letr 137 |
. . . . . 6
d ≤ (a →2 b) |
16 | 15 | df-le2 131 |
. . . . 5
(d ∪ (a →2 b)) = (a
→2 b) |
17 | 13, 16 | ax-r2 36 |
. . . 4
((a →2 b) ∪ d) =
(a →2 b) |
18 | 17 | ran 78 |
. . 3
(((a →2 b) ∪ d)
∩ ((b ∪ c)⊥ ∪ d)) = ((a
→2 b) ∩ ((b ∪ c)⊥ ∪ d)) |
19 | 12, 18 | lbtr 139 |
. 2
(((a →2 b) ∩ (b
∪ c)⊥ ) ∪ d) ≤ ((a
→2 b) ∩ ((b ∪ c)⊥ ∪ d)) |
20 | 11, 19 | lebi 145 |
1
((a →2 b) ∩ ((b
∪ c)⊥ ∪ d)) = (((a
→2 b) ∩ (b ∪ c)⊥ ) ∪ d) |