QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem3.3.3lem3 GIF version

Theorem lem3.3.3lem3 1051
Description: Lemma for lem3.3.3 1052. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.)
Assertion
Ref Expression
lem3.3.3lem3 (a5 b) ≤ ((a1 b) ∩ (b1 a))

Proof of Theorem lem3.3.3lem3
StepHypRef Expression
1 lem3.3.3lem1 1049 . 2 (a5 b) ≤ (a1 b)
2 lem3.3.3lem2 1050 . 2 (a5 b) ≤ (b1 a)
31, 2ler2an 173 1 (a5 b) ≤ ((a1 b) ∩ (b1 a))
Colors of variables: term
Syntax hints:  wle 2  wa 7  1 wi1 12  5 wid5 22
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-id5 1047
This theorem is referenced by:  lem3.3.3  1052
  Copyright terms: Public domain W3C validator