Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lem3.3.3lem3 | GIF version |
Description: Lemma for lem3.3.3 1052. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
Ref | Expression |
---|---|
lem3.3.3lem3 | (a ≡5 b) ≤ ((a →1 b) ∩ (b →1 a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lem3.3.3lem1 1049 | . 2 (a ≡5 b) ≤ (a →1 b) | |
2 | lem3.3.3lem2 1050 | . 2 (a ≡5 b) ≤ (b →1 a) | |
3 | 1, 2 | ler2an 173 | 1 (a ≡5 b) ≤ ((a →1 b) ∩ (b →1 a)) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∩ wa 7 →1 wi1 12 ≡5 wid5 22 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-id5 1047 |
This theorem is referenced by: lem3.3.3 1052 |
Copyright terms: Public domain | W3C validator |