Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lem3.3.3lem2 | GIF version |
Description: Lemma for lem3.3.3 1052. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
Ref | Expression |
---|---|
lem3.3.3lem2 | (a ≡5 b) ≤ (b →1 a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lear 161 | . . . 4 (a⊥ ∩ b⊥ ) ≤ b⊥ | |
2 | 1 | leror 152 | . . 3 ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) ≤ (b⊥ ∪ (a ∩ b)) |
3 | ax-a2 31 | . . 3 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) | |
4 | ancom 74 | . . . 4 (b ∩ a) = (a ∩ b) | |
5 | 4 | lor 70 | . . 3 (b⊥ ∪ (b ∩ a)) = (b⊥ ∪ (a ∩ b)) |
6 | 2, 3, 5 | le3tr1 140 | . 2 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (b⊥ ∪ (b ∩ a)) |
7 | df-id5 1047 | . 2 (a ≡5 b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
8 | df-i1 44 | . 2 (b →1 a) = (b⊥ ∪ (b ∩ a)) | |
9 | 6, 7, 8 | le3tr1 140 | 1 (a ≡5 b) ≤ (b →1 a) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 ≡5 wid5 22 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-id5 1047 |
This theorem is referenced by: lem3.3.3lem3 1051 |
Copyright terms: Public domain | W3C validator |