QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem3.3.5lem GIF version

Theorem lem3.3.5lem 1054
Description: A fundamental property in quantum logic. Lemma for lem3.3.5 1055. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.)
Hypothesis
Ref Expression
lem3.3.5lem.1 1 ≤ a
Assertion
Ref Expression
lem3.3.5lem a = 1

Proof of Theorem lem3.3.5lem
StepHypRef Expression
1 le1 146 . 2 a ≤ 1
2 lem3.3.5lem.1 . 2 1 ≤ a
31, 2lebi 145 1 a = 1
Colors of variables: term
Syntax hints:   = wb 1  wle 2  1wt 8
This theorem was proved from axioms:  ax-a2 31  ax-a4 33  ax-r1 35  ax-r2 36  ax-r5 38
This theorem depends on definitions:  df-t 41  df-le1 130  df-le2 131
This theorem is referenced by:  lem3.3.5  1055  lem3.4.3  1076  lem4.6.6i1j3  1094
  Copyright terms: Public domain W3C validator