Proof of Theorem lem3.3.4
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. 2
(a →2 (a ≡5 b)) = ((a
≡5 b) ∪ (a⊥ ∩ (a ≡5 b)⊥ )) |
2 | | df-id5 1047 |
. . . . . . 7
(a ≡5 b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
3 | 2 | ax-r4 37 |
. . . . . 6
(a ≡5 b)⊥ = ((a ∩ b) ∪
(a⊥ ∩ b⊥
))⊥ |
4 | 3 | lan 77 |
. . . . 5
(a⊥ ∩ (a ≡5 b)⊥ ) = (a⊥ ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥
) |
5 | | anor3 90 |
. . . . . . . 8
((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
((a ∩ b) ∪ (a⊥ ∩ b⊥
))⊥ |
6 | 5 | ax-r1 35 |
. . . . . . 7
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ =
((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥
) |
7 | | oran3 93 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
8 | 7 | ax-r1 35 |
. . . . . . . 8
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
9 | | oran 87 |
. . . . . . . . 9
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
10 | 9 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
11 | 8, 10 | 2an 79 |
. . . . . . 7
((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
((a⊥ ∪ b⊥ ) ∩ (a ∪ b)) |
12 | 6, 11 | ax-r2 36 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ =
((a⊥ ∪ b⊥ ) ∩ (a ∪ b)) |
13 | 12 | lan 77 |
. . . . 5
(a⊥ ∩
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ) =
(a⊥ ∩ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b))) |
14 | | anabs 121 |
. . . . . . 7
(a⊥ ∩ (a⊥ ∪ b⊥ )) = a⊥ |
15 | 14 | ran 78 |
. . . . . 6
((a⊥ ∩
(a⊥ ∪ b⊥ )) ∩ (a ∪ b)) =
(a⊥ ∩ (a ∪ b)) |
16 | | anass 76 |
. . . . . 6
((a⊥ ∩
(a⊥ ∪ b⊥ )) ∩ (a ∪ b)) =
(a⊥ ∩ ((a⊥ ∪ b⊥ ) ∩ (a ∪ b))) |
17 | | lem3.3.4.1 |
. . . . . . . 8
(b →2 a) = 1 |
18 | 17 | ax-r4 37 |
. . . . . . 7
(b →2 a)⊥ =
1⊥ |
19 | 9 | con2 67 |
. . . . . . . . . . 11
(a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
20 | | ancom 74 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
21 | 19, 20 | ax-r2 36 |
. . . . . . . . . 10
(a ∪ b)⊥ = (b⊥ ∩ a⊥ ) |
22 | 21 | lor 70 |
. . . . . . . . 9
(a ∪ (a ∪ b)⊥ ) = (a ∪ (b⊥ ∩ a⊥ )) |
23 | | oran1 91 |
. . . . . . . . . 10
(a ∪ (a ∪ b)⊥ ) = (a⊥ ∩ (a ∪ b))⊥ |
24 | 23 | ax-r1 35 |
. . . . . . . . 9
(a⊥ ∩ (a ∪ b))⊥ = (a ∪ (a ∪
b)⊥ ) |
25 | | df-i2 45 |
. . . . . . . . 9
(b →2 a) = (a ∪
(b⊥ ∩ a⊥ )) |
26 | 22, 24, 25 | 3tr1 63 |
. . . . . . . 8
(a⊥ ∩ (a ∪ b))⊥ = (b →2 a) |
27 | 26 | con3 68 |
. . . . . . 7
(a⊥ ∩ (a ∪ b)) =
(b →2 a)⊥ |
28 | | df-f 42 |
. . . . . . 7
0 = 1⊥ |
29 | 18, 27, 28 | 3tr1 63 |
. . . . . 6
(a⊥ ∩ (a ∪ b)) =
0 |
30 | 15, 16, 29 | 3tr2 64 |
. . . . 5
(a⊥ ∩
((a⊥ ∪ b⊥ ) ∩ (a ∪ b))) =
0 |
31 | 4, 13, 30 | 3tr 65 |
. . . 4
(a⊥ ∩ (a ≡5 b)⊥ ) = 0 |
32 | 31 | lor 70 |
. . 3
((a ≡5 b) ∪ (a⊥ ∩ (a ≡5 b)⊥ )) = ((a ≡5 b) ∪ 0) |
33 | | ax-a2 31 |
. . 3
((a ≡5 b) ∪ 0) = (0 ∪ (a ≡5 b)) |
34 | 32, 33 | ax-r2 36 |
. 2
((a ≡5 b) ∪ (a⊥ ∩ (a ≡5 b)⊥ )) = (0 ∪ (a ≡5 b)) |
35 | | or0r 103 |
. 2
(0 ∪ (a ≡5
b)) = (a ≡5 b) |
36 | 1, 34, 35 | 3tr 65 |
1
(a →2 (a ≡5 b)) = (a
≡5 b) |