Proof of Theorem lem3.4.3
Step | Hyp | Ref
| Expression |
1 | | lem3.4.3.1 |
. . . . . 6
(a →2 b) = 1 |
2 | 1 | 2vwomr2a 364 |
. . . . 5
(a →1 b) = 1 |
3 | 2 | ax-r1 35 |
. . . 4
1 = (a →1 b) |
4 | | anidm 111 |
. . . . . . . . . 10
(a ∩ a) = a |
5 | 4 | ax-r1 35 |
. . . . . . . . 9
a = (a ∩ a) |
6 | 5 | ran 78 |
. . . . . . . 8
(a ∩ b) = ((a ∩
a) ∩ b) |
7 | | lea 160 |
. . . . . . . . . 10
(a ∩ a) ≤ a |
8 | 7 | lel 151 |
. . . . . . . . 9
((a ∩ a) ∩ b) ≤
a |
9 | 7 | leran 153 |
. . . . . . . . . 10
((a ∩ a) ∩ b) ≤
(a ∩ b) |
10 | 9 | ler 149 |
. . . . . . . . 9
((a ∩ a) ∩ b) ≤
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
11 | 8, 10 | ler2an 173 |
. . . . . . . 8
((a ∩ a) ∩ b) ≤
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) |
12 | 6, 11 | bltr 138 |
. . . . . . 7
(a ∩ b) ≤ (a ∩
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
13 | | df-id5 1047 |
. . . . . . . . 9
(a ≡5 b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
14 | 13 | ax-r1 35 |
. . . . . . . 8
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a ≡5 b) |
15 | 14 | lan 77 |
. . . . . . 7
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = (a ∩ (a
≡5 b)) |
16 | 12, 15 | lbtr 139 |
. . . . . 6
(a ∩ b) ≤ (a ∩
(a ≡5 b)) |
17 | 16 | lelor 166 |
. . . . 5
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ (a ∩ (a
≡5 b))) |
18 | | df-i1 44 |
. . . . 5
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
19 | | df-i1 44 |
. . . . 5
(a →1 (a ≡5 b)) = (a⊥ ∪ (a ∩ (a
≡5 b))) |
20 | 17, 18, 19 | le3tr1 140 |
. . . 4
(a →1 b) ≤ (a
→1 (a ≡5
b)) |
21 | 3, 20 | bltr 138 |
. . 3
1 ≤ (a →1
(a ≡5 b)) |
22 | 21 | lem3.3.5lem 1054 |
. 2
(a →1 (a ≡5 b)) = 1 |
23 | 22 | 2vwomr1a 363 |
1
(a →2 (a ≡5 b)) = 1 |