Proof of Theorem lem4.6.6i1j3
Step | Hyp | Ref
| Expression |
1 | | leo 158 |
. . . . . . . 8
a⊥ ≤ (a⊥ ∪ (a ∩ b)) |
2 | 1 | ler 149 |
. . . . . . 7
a⊥ ≤ ((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
3 | 2 | lecom 180 |
. . . . . 6
a⊥ C
((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
4 | 3 | comcom6 459 |
. . . . 5
a C ((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
5 | 4 | comcom 453 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) C a |
6 | | lear 161 |
. . . . . . 7
(a ∩ b) ≤ b |
7 | 6 | lelor 166 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ b) |
8 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ b) ≤ a⊥ |
9 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ a⊥ |
10 | 8, 9 | lel2or 170 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
11 | 10 | ler 149 |
. . . . . 6
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ b) |
12 | 7, 11 | lel2or 170 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ≤ (a⊥ ∪ b) |
13 | 12 | lecom 180 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) C (a⊥ ∪ b) |
14 | 5, 13 | fh3 471 |
. . 3
(((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) = ((((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) |
15 | | ax-a3 32 |
. . 3
(((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∪ (a ∩ b))
∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
16 | | ax-a2 31 |
. . . . 5
(((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) = (a ∪
((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
17 | 16 | ran 78 |
. . . 4
((((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = ((a ∪
((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) |
18 | | ax-a3 32 |
. . . . . 6
((a ∪ (a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
19 | 18 | ax-r1 35 |
. . . . 5
(a ∪ ((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = ((a ∪ (a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
20 | 19 | ran 78 |
. . . 4
((a ∪ ((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = (((a
∪ (a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) |
21 | | ax-a3 32 |
. . . . . . . 8
((a ∪ a⊥ ) ∪ (a ∩ b)) =
(a ∪ (a⊥ ∪ (a ∩ b))) |
22 | 21 | ax-r1 35 |
. . . . . . 7
(a ∪ (a⊥ ∪ (a ∩ b))) =
((a ∪ a⊥ ) ∪ (a ∩ b)) |
23 | 22 | ax-r5 38 |
. . . . . 6
((a ∪ (a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a ∪ a⊥ ) ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
24 | 23 | ran 78 |
. . . . 5
(((a ∪ (a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = ((((a
∪ a⊥ ) ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) |
25 | | ax-a4 33 |
. . . . . . . . . 10
(1 ∪ (a ∪ a⊥ )) = (a ∪ a⊥ ) |
26 | 25 | df-le1 130 |
. . . . . . . . 9
1 ≤ (a ∪ a⊥ ) |
27 | 26 | ler 149 |
. . . . . . . 8
1 ≤ ((a ∪ a⊥ ) ∪ (a ∩ b)) |
28 | 27 | ler 149 |
. . . . . . 7
1 ≤ (((a ∪ a⊥ ) ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
29 | 28 | lem3.3.5lem 1054 |
. . . . . 6
(((a ∪ a⊥ ) ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = 1 |
30 | 29 | ran 78 |
. . . . 5
((((a ∪ a⊥ ) ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = (1 ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) |
31 | | an1r 107 |
. . . . . 6
(1 ∩ (((a⊥
∪ (a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b)) |
32 | | ax-a2 31 |
. . . . . . 7
((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b))) |
33 | 32 | ax-r5 38 |
. . . . . 6
(((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b)) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b)))
∪ (a⊥ ∪ b)) |
34 | | ax-a3 32 |
. . . . . . 7
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b)))
∪ (a⊥ ∪ b)) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ (a ∩ b))
∪ (a⊥ ∪ b))) |
35 | | orordi 112 |
. . . . . . . . . 10
(a⊥ ∪
((a ∩ b) ∪ b)) =
((a⊥ ∪ (a ∩ b))
∪ (a⊥ ∪ b)) |
36 | 35 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b)) ∪ (a⊥ ∪ b)) = (a⊥ ∪ ((a ∩ b) ∪
b)) |
37 | 36 | lor 70 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ (a ∩ b))
∪ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ ((a ∩ b) ∪
b))) |
38 | 6 | df-le2 131 |
. . . . . . . . . 10
((a ∩ b) ∪ b) =
b |
39 | 38 | lor 70 |
. . . . . . . . 9
(a⊥ ∪
((a ∩ b) ∪ b)) =
(a⊥ ∪ b) |
40 | 39 | lor 70 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ ((a ∩ b) ∪
b))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) |
41 | 11 | df-le2 131 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
42 | 37, 40, 41 | 3tr 65 |
. . . . . . 7
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ (a ∩ b))
∪ (a⊥ ∪ b))) = (a⊥ ∪ b) |
43 | 34, 42 | ax-r2 36 |
. . . . . 6
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b)))
∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
44 | 31, 33, 43 | 3tr 65 |
. . . . 5
(1 ∩ (((a⊥
∪ (a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = (a⊥ ∪ b) |
45 | 24, 30, 44 | 3tr 65 |
. . . 4
(((a ∪ (a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = (a⊥ ∪ b) |
46 | 17, 20, 45 | 3tr 65 |
. . 3
((((a⊥ ∪
(a ∩ b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) ∩ (((a⊥ ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ (a⊥ ∪ b))) = (a⊥ ∪ b) |
47 | 14, 15, 46 | 3tr2 64 |
. 2
((a⊥ ∪
(a ∩ b)) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = (a⊥ ∪ b) |
48 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
49 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
50 | 48, 49 | 2or 72 |
. 2
((a →1 b) ∪ (a
→3 b)) = ((a⊥ ∪ (a ∩ b))
∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
51 | | df-i0 43 |
. 2
(a →0 b) = (a⊥ ∪ b) |
52 | 47, 50, 51 | 3tr1 63 |
1
((a →1 b) ∪ (a
→3 b)) = (a →0 b) |