QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem3.3.7i0e2 GIF version

Theorem lem3.3.7i0e2 1058
Description: Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 0, and this is the second part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.)
Assertion
Ref Expression
lem3.3.7i0e2 (a0 (ab)) = ((ab) ≡0 a)

Proof of Theorem lem3.3.7i0e2
StepHypRef Expression
1 ancom 74 . 2 ((a ∪ (ab)) ∩ ((ab)a)) = (((ab)a) ∩ (a ∪ (ab)))
2 df-id0 49 . 2 (a0 (ab)) = ((a ∪ (ab)) ∩ ((ab)a))
3 df-id0 49 . 2 ((ab) ≡0 a) = (((ab)a) ∩ (a ∪ (ab)))
41, 2, 33tr1 63 1 (a0 (ab)) = ((ab) ≡0 a)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  0 wid0 17
This theorem was proved from axioms:  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37
This theorem depends on definitions:  df-a 40  df-id0 49
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator