Proof of Theorem lem3.3.7i0e1
Step | Hyp | Ref
| Expression |
1 | | or1 104 |
. . . . . . 7
(b⊥ ∪ 1) =
1 |
2 | 1 | ax-r1 35 |
. . . . . 6
1 = (b⊥ ∪
1) |
3 | 2 | lan 77 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ 1) = ((a⊥ ∪ (a ∩ b))
∩ (b⊥ ∪
1)) |
4 | | an1 106 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ 1) = (a⊥ ∪ (a ∩ b)) |
5 | | df-t 41 |
. . . . . . 7
1 = (a ∪ a⊥ ) |
6 | 5 | lor 70 |
. . . . . 6
(b⊥ ∪ 1) =
(b⊥ ∪ (a ∪ a⊥ )) |
7 | 6 | lan 77 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ (b⊥ ∪ 1)) = ((a⊥ ∪ (a ∩ b))
∩ (b⊥ ∪ (a ∪ a⊥ ))) |
8 | 3, 4, 7 | 3tr2 64 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ (b⊥ ∪ (a ∪ a⊥ ))) |
9 | | ax-a2 31 |
. . . . . 6
(a ∪ a⊥ ) = (a⊥ ∪ a) |
10 | 9 | lor 70 |
. . . . 5
(b⊥ ∪ (a ∪ a⊥ )) = (b⊥ ∪ (a⊥ ∪ a)) |
11 | 10 | lan 77 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∩ (b⊥ ∪ (a ∪ a⊥ ))) = ((a⊥ ∪ (a ∩ b))
∩ (b⊥ ∪ (a⊥ ∪ a))) |
12 | | ax-a3 32 |
. . . . . 6
((b⊥ ∪ a⊥ ) ∪ a) = (b⊥ ∪ (a⊥ ∪ a)) |
13 | 12 | ax-r1 35 |
. . . . 5
(b⊥ ∪ (a⊥ ∪ a)) = ((b⊥ ∪ a⊥ ) ∪ a) |
14 | 13 | lan 77 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∩ (b⊥ ∪ (a⊥ ∪ a))) = ((a⊥ ∪ (a ∩ b))
∩ ((b⊥ ∪ a⊥ ) ∪ a)) |
15 | 8, 11, 14 | 3tr 65 |
. . 3
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ ((b⊥ ∪ a⊥ ) ∪ a)) |
16 | | ax-a2 31 |
. . . . 5
(b⊥ ∪ a⊥ ) = (a⊥ ∪ b⊥ ) |
17 | 16 | ax-r5 38 |
. . . 4
((b⊥ ∪ a⊥ ) ∪ a) = ((a⊥ ∪ b⊥ ) ∪ a) |
18 | 17 | lan 77 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ ((b⊥ ∪ a⊥ ) ∪ a)) = ((a⊥ ∪ (a ∩ b))
∩ ((a⊥ ∪ b⊥ ) ∪ a)) |
19 | | oran3 93 |
. . . . 5
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
20 | 19 | ax-r5 38 |
. . . 4
((a⊥ ∪ b⊥ ) ∪ a) = ((a ∩
b)⊥ ∪ a) |
21 | 20 | lan 77 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ ((a⊥ ∪ b⊥ ) ∪ a)) = ((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ a)) |
22 | 15, 18, 21 | 3tr 65 |
. 2
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ a)) |
23 | | df-i0 43 |
. 2
(a →0 (a ∩ b)) =
(a⊥ ∪ (a ∩ b)) |
24 | | df-id0 49 |
. 2
(a ≡0 (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ a)) |
25 | 22, 23, 24 | 3tr1 63 |
1
(a →0 (a ∩ b)) =
(a ≡0 (a ∩ b)) |