| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > lem4.6.4 | GIF version | ||
| Description: Equation 4.12 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 1-Jul-2005.) |
| Ref | Expression |
|---|---|
| lem4.6.4 | ((a →1 b) →1 b) = (a⊥ →1 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | u1lem12 781 | 1 ((a →1 b) →1 b) = (a⊥ →1 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |