Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lem12 | GIF version |
Description: Lemma used in study of orthoarguesian law. Equation 4.12 of [MegPav2000] p. 23. (Contributed by NM, 28-Dec-1998.) |
Ref | Expression |
---|---|
u1lem12 | ((a →1 b) →1 b) = (a⊥ →1 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
2 | 1 | ud1lem0b 256 | . . 3 (a →1 b) = (a⊥ ⊥ →1 b) |
3 | 2 | ud1lem0b 256 | . 2 ((a →1 b) →1 b) = ((a⊥ ⊥ →1 b) →1 b) |
4 | u1lem11 780 | . 2 ((a⊥ ⊥ →1 b) →1 b) = (a⊥ →1 b) | |
5 | 3, 4 | ax-r2 36 | 1 ((a →1 b) →1 b) = (a⊥ →1 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: sac 835 oa4gto4u 976 lem4.6.4 1086 |
Copyright terms: Public domain | W3C validator |