QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem4.6.5 GIF version

Theorem lem4.6.5 1087
Description: Equation 4.13 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 1-Jul-2005.)
Assertion
Ref Expression
lem4.6.5 ((a1 b)1 b) = (a1 b)

Proof of Theorem lem4.6.5
StepHypRef Expression
1 u1lemn1b 730 . 2 (a1 b) = ((a1 b)1 b)
21ax-r1 35 1 ((a1 b)1 b) = (a1 b)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator