Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemn1b | GIF version |
Description: This theorem continues the line of proofs such as u1lemnaa 640, ud1lem0b 256, u1lemnanb 655, etc. (Contributed by Josiah Burroughs, 26-May-2004.) |
Ref | Expression |
---|---|
u1lemn1b | (a →1 b) = ((a →1 b)⊥ →1 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . 3 (a →1 b) = (a →1 b)⊥ ⊥ | |
2 | u1lemnab 650 | . . . 4 ((a →1 b)⊥ ∩ b) = 0 | |
3 | 2 | ax-r1 35 | . . 3 0 = ((a →1 b)⊥ ∩ b) |
4 | 1, 3 | 2or 72 | . 2 ((a →1 b) ∪ 0) = ((a →1 b)⊥ ⊥ ∪ ((a →1 b)⊥ ∩ b)) |
5 | or0 102 | . . 3 ((a →1 b) ∪ 0) = (a →1 b) | |
6 | 5 | ax-r1 35 | . 2 (a →1 b) = ((a →1 b) ∪ 0) |
7 | df-i1 44 | . 2 ((a →1 b)⊥ →1 b) = ((a →1 b)⊥ ⊥ ∪ ((a →1 b)⊥ ∩ b)) | |
8 | 4, 6, 7 | 3tr1 63 | 1 (a →1 b) = ((a →1 b)⊥ →1 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 0wf 9 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 |
This theorem is referenced by: u1lem3var1 731 lem4.6.5 1087 |
Copyright terms: Public domain | W3C validator |