| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > lem4.6.6i4j0 | GIF version | ||
| Description: Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 4, and j is set to 0. (Contributed by Roy F. Longton, 2-Jul-2005.) |
| Ref | Expression |
|---|---|
| lem4.6.6i4j0 | ((a →4 b) ∪ (a →0 b)) = (a →0 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leao4 165 | . . . . 5 (a ∩ b) ≤ (a⊥ ∪ b) | |
| 2 | leao1 162 | . . . . 5 (a⊥ ∩ b) ≤ (a⊥ ∪ b) | |
| 3 | 1, 2 | lel2or 170 | . . . 4 ((a ∩ b) ∪ (a⊥ ∩ b)) ≤ (a⊥ ∪ b) |
| 4 | lea 160 | . . . 4 ((a⊥ ∪ b) ∩ b⊥ ) ≤ (a⊥ ∪ b) | |
| 5 | 3, 4 | lel2or 170 | . . 3 (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ≤ (a⊥ ∪ b) |
| 6 | 5 | df-le2 131 | . 2 ((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
| 7 | df-i4 47 | . . 3 (a →4 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) | |
| 8 | df-i0 43 | . . 3 (a →0 b) = (a⊥ ∪ b) | |
| 9 | 7, 8 | 2or 72 | . 2 ((a →4 b) ∪ (a →0 b)) = ((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ (a⊥ ∪ b)) |
| 10 | 6, 9, 8 | 3tr1 63 | 1 ((a →4 b) ∪ (a →0 b)) = (a →0 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →0 wi0 11 →4 wi4 15 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i4 47 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |